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Abstract

Self-indexes save space by emulating operations of traditional data structures using basic operations

on bitvectors. Succinct text indexes provide full-text search functionality which is traditionally pro-

vided by suffix trees and suffix arrays for a given text, while using space equivalent to the compressed

representation of the text. Succinct text indexes can therefore provide full-text search functionality

over inputs much larger than what is viable using traditional uncompressed suffix-based data struc-

tures.

Fields such as Information Retrieval involve the processing of massive text collections. However,

the in-memory space requirements of succinct text indexes during construction have hampered their

adoption for large text collections. One promising approach to support larger data sets is to avoid

constructing the full suffix array by using alternative indexing representations.

This thesis focuses on several aspects related to the scalability of text indexes to larger data

sets. We identify practical improvements in the core building blocks of all succinct text indexing

algorithms, and subsequently improve the index performance on large data sets. We evaluate our

findings using several standard text collections and demonstrate: (1) the practical applications of our

improved indexing techniques; and (2) that succinct text indexes are a practical alternative to inverted

indexes for a variety of top-φranked document retrieval problems.



Notation

Here we give an overview of the notation used in this thesis.

Symbol Description

BWT Fully sorted Burrows Wheeler Transform.

k-BWT Context-Bound Burrows Wheeler Transform sorted to depth k.

v-BWT Context-Bound Burrows Wheeler Transform with threshold v.

T Input sequence of length n.

n Length of the bitvector or text T .

σ Size of the alphabet, Σ, all symbols in T are drawn from.

T bwt Text T transformed using the BWT corresponding to the last column (L) ofM.

T kbwt Text T transformed using the k-BWT. corresponding to the last column (L) ofMk.

T v-BWT Text T transformed using the v-BWT. Corresponds to the last column ofMv.

k Sorting depth of the k-BWT.

v Threshold of the v-BWT. Equal to the maximum size of context groups inMv.

kmin Minimum sorting depth of the v-BWT.

kmax Maximum sorting depth of the v-BWT.

Q Q[c] stores the number of symbols in T bwt smaller than c.

Y Error threshold of the approximate pattern matching algorithm.

Dk Bitvector describing the k-group boundaries inMk.

D2, D3 Bitvectors describing the 2 and 3 group boundaries inM2 andM3.

Dv Bitvector describing the context group boundaries inMv.

div Size of the context group containing row i at sorting depth v.

M MatrixM whose rows contain the cyclic rotations of T in lexicographical order.

Mk MatrixM of rotations with the rotations stably k-sorted.

M3 MatrixM of rotations with the rotations stably 3-sorted.

Mv MatrixM of rotations with the rotations so no context group is > v.
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L Last column of the transform matrix which corresponds to the BWT or k-BWT.

F First column of the transform matrix.

LF Last to first column mapping ofM used to recover T from T bwt.

LFk Last to first column mapping ofMk used to recover T from T kbwt.

Ci Context group referring to the i-th largest k long prefix inMk.

Cabc Context group with the same k = 3 prefix abc inMk.

SA Suffix Array where suffixes are fully lexicographically sorted.

SAk Suffix Array where suffixes are lexicographically sorted up to depth k.

kblock Initial block size of the external k-BWT construction algorithm.

γ Branching factor of the external merge construction algorithm.

I Position of the original text inM and the start of the reversal algorithm.

P Pattern of length m.

〈sp, ep〉 Range of rows inM prefixed by P .

B / bv Uncompressed bitvector of size n.

Brrr H0 compressed bitvector of Raman et al. [2002].

K Block size of the H0 compressed bitvector of representation Raman et al. [2002].

bi Block bi of size K bits in Brrr represented as < κi, λi >.

κi, λi For each bi in Brrr, κi represents the block class and λi the offset of bi in κi.

C Array in Brrr storing the class κi types of each block.

O Array in Brrr storing the class offsets λi types of each block.

S Array in Brrr storing rank samples Raman et al. [2002].

r Size of a superblock in SEL-CLARK covering log n log logn one bits.

long, block, mini In SEL-CLARK, depending on r, a superblock is represented as a long block, or

multiple blocks and mini-blocks.

r′ Size of a block in SEL-CLARK covering r/ log r log logn one bits.

Rs, Rb Superblock and block array of the rank structure of González et al. [2005].

HP Hugepages support of the operating system.

RANK-V Rank structure of Vigna [2008] using 25% overhead.

RANK-IL Interleaved rank structure proposed in 3.2.

SEL-C Engineered select structure proposed in 3.3.

W Number of one bits in the superblock of SEL-C.

SEL-CLARK Faithful implementation of constant time select of Clark [1996].

SEL-BS Binary Search select of González et al. [2005].
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SEL-BSH Cache-friendly Binary Search select of González et al. [2005].

SEL-V9 Select method of Vigna [2008] built on top of RANK-V.

SEL-VS Engineered select method of Vigna [2008].

TAAT Term-at-a-time query processing.

DAAT Document-at-a-time query processing.

D Collection of documents comprising the collection.

d Number of documents in the collection.

Di i-th document in the document collection D.

N Number of distinct terms in the collection.

q Search query q consisting of query terms q0 . . . qj .

|q| Number of query terms in the query.

qi Individual query term of the bag-of-words query q.

S(q,Di) Similarity ranking function.

fqi Number of documents containing one or more occurrence of qi.

Fqi Number of occurrences of qi in the collection.

fqi,j Number of occurrences of qi in a document Dj .

BM25 Standard similarity ranking function [Robertson et al., 1994a].

k1, b Tuneable parameters for the BM25 similarity metric. Usually k1 = 1.2, b = 0.75.

φ Number of relevant documents to be retrieved.

φ′ Larger query threshold for each query term to be retrieved.

DA Map each SA[i] to the corresponding document, DA[i], the suffix SA[i] occurs in.

WTDA Wavelet tree over DA.

HSV Skeleton suffix tree-based structure of Hon et al. [2009].

g Sample rate with which the HSV structure pre-stores values.



Chapter 1

Introduction

Researching an entry in an encyclopedia or the address of a restaurant was once considered a time

consuming manual labor task. In contrast, these tasks today require little to no effort from an average

computer user and can be performed instantaneously. This can be attributed to the availability of fast

text search over many different data sources. Applications such as search engines, genome databases,

and spam filters process large amounts of data. For example, popular social media platforms produce

over 340 million messages per day.1 Genome databases such as GenBank store 180 million sequences

in 587 GB.2 Therefore, being able to efficiently locate relevant information — text search — becomes

especially important as manual search becomes impractical. While the way text search is used may

be different for many applications, it can often be reduced to one of the core problems in computer

science: exact pattern matching. Formally, this classic problem is defined as:

Definition 1 [Gusfield, 1997] Given a string P of length m called the pattern and a longer string T

of length n called the text, the exact pattern matching problem is to find all occurrences, if any, of P

in T .

Exact pattern matching is fundamental to many practical problems ranging from word processing

to natural language processing. Nevertheless, some specific applications of pattern matching such

as computational biology face a more difficult problem: the text (or genome sequence) can contain

errors. For example, errors in the text can result from mutations in genetic code or difficulties in the

process of sequencing the genome sequence. The existence of errors therefore complicates the task

of exploring genome sequences using traditional pattern matching algorithms. In this context, pattern
1http://blog.twitter.com/2012/03/twitter-turns-six.html
2ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt
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matching allowing errors is an important subproblem. Formally, this is known as approximate pattern

matching and is defined as:

Definition 2 [Navarro, 2001] Given a text T , a pattern P , a non-negative integer Y and a distance

metric d(), find all occurrences, if any, of P in T where the distance d() between the occurrence and

P is less than or equal to Y .

Here, distance is any arbitrary metric used to numerically quantify the similarity between two se-

quences such as the Edit Distance [Sellers, 1980].

The concept of similarity is also important in the area of Information Retrieval (IR) where the

relevance of a document is expressed using a similarity metric. Most IR processes solve the more

abstract pattern matching problem called the ranked document search problem. In this context a

search pattern is often referred to as a query consisting of one or more query terms. The text T is

further partitioned into a set of documents. Unlike traditional pattern matching, documents instead of

text positions are returned to the user. The documents are ranked by their relevance to the information

need formulated by the user through the query [Croft et al., 2009]. In practice, the notion of relevance

is “emulated” by a similarity metric. Therefore, a search returns a subset of documents in the text

which are most similar to the search query. Formally, we define the ranked document search problem

as:

Definition 3 Given a query q consisting of one or more query terms qi, a non-negative integer φ and

a text T partitioned into d documents {D1, D2, . . . , Dd}, return the top-φ documents ordered by a

similarity measure S(q,Di).

A document is considered relevant if it helps to satisfy the information need of the user. Unsur-

prisingly, the relevance of a document can not always be objectively assessed as it relies on the

perception of the individual user. Therefore, modelling and evaluating relevance, expressed through

the similarity measure used to rank documents, is a difficult problem in a continuously evolving area

of research [Hawking et al., 2001]. The effectiveness of an algorithm solving the ranked document

search problem describes the quality of the results returned to the user. Evaluating the effectiveness

of an algorithm is non-trivial as effectiveness is generally measured by user satisfaction which itself

can be subjective and difficult to measure [Al-Maskari et al., 2007].

In practice, there are two general approaches to solve the exact, approximate and ranked docu-

ment text search problems discussed above: online and offline pattern matching. Online exact pat-

tern matching algorithms preprocess the pattern P and locate all occurrences of P by performing
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a complete scan over the text T . Several theoretically optimal [Knuth et al., 1977] and practically

fast [Horspool, 1980] online exact pattern matching algorithms exist, and are used in popular text

searching tools such as grep. However, online pattern matching algorithms have one major dis-

advantage: search time is proportional to the size of the text. In contrast, offline pattern matching

allows searching for any pattern P in a text T using time proportional only to the size of the pat-

tern [Weiner, 1973]. To achieve this improvement in run time performance, offline pattern matching

algorithms preprocess the text to create an index. The index consists of auxiliary data, stored on disk

or in-memory, which is used to allow fast pattern matching over the text. In this perspective there

exists a classical time and space trade-off between the two approaches to pattern matching: compared

to online pattern matching, offline pattern matching algorithms require additional space to reduce the

time required to perform search. In this thesis we focus only on offline pattern matching and text

indexing.

The most common index used in IR to solve the ranked document search problem is the inverted

index. The inverted index consists of two main components, the vocabulary and the postings lists.

During index construction each document in the text is segmented into an ordered set of terms. For

English text, terms refer to the words in a document. Each unique term in the text is added to the

vocabulary. For each unique term, the documents containing the term (and optionally, the positions

of the term within the documents) are stored in compressed form in a postings list. A variety of time

and space trade-offs exist in regards to storing and accessing both main components of the inverted

index [Zobel and Moffat, 2006]. During query processing, the vocabulary is used as a look-up table to

retrieve the postings lists of the query terms. The ranked document search problem is then answered

by processing the retrieved postings lists. The processing of the retrieved lists varies depending on

the query type, desired quality of the result set, storage location and compression method of the

individual lists [Zobel and Moffat, 2006]. For example, storing postings lists on disk is generally

coupled with compression schemes which require sequential processing, whereas postings lists stored

in-memory can support efficient random access to increase query run time performance. The choices

made during index construction and query time can therefore impact both efficiency and effectiveness

of query processing [Zobel and Moffat, 2006]. The most prominent example of inverted index-based

text search is the Google search engine. It provides search capabilities over the World Wide Web by

periodically crawling public websites and creating a highly engineered inverted index [Barroso et al.,

2003].

While inverted indexes are widely used in practice today, they exhibit several inherent limitations.

Inverted indexes are built around the notion of terms. Each document in the text is segmented, that

is partitioned, at construction time into an ordered set of terms. In practice, segmenting involves
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additional term normalization techniques such as stemming and stopping [Zobel and Moffat, 2006].

Stemming refers to reducing words to their base form. For example, the words “swimming” and

“swimmer” are reduced to the term “swim”, which is then included in the vocabulary. Stopping

refers to removing terms such as “the” or “and” from the vocabulary. Both techniques are used to

increase the efficiency of the index. Stemming reduces the number of postings lists whereas stopping

specifically excludes words which occur frequently but contain little semantic content. In essence,

inverted indexes are carefully engineered to store and retrieve auxiliary information about terms in

the text to solve the ranked document search problem efficiently. However, relying on the notion

of terms as the basic building blocks of the index has several drawbacks. At query time, a query

consisting of one or more query terms is evaluated. The posting list for each query term is retrieved

using the vocabulary and processed. Only those query terms contained in the vocabulary which was

created during index construction can be processed. Therefore, an inverted index can not be used to

solve the exact pattern matching problem as only terms selected during the construction process are

searchable via the index. For example, if stopping is used the index does not contain the term “the”,

while stemming reduces the occurrences of “swimmer” to the term “swim”. Therefore, determining

the exact positions of the pattern “the swimmer” is not possible with a traditional inverted index. A

different problem with a term-based index is the non-trivial task of segmenting certain texts. For ex-

ample, agglutinative languages such as German or Hungarian form new words by combining existing

words. Many East Asian languages do not contain explicit word boundaries in sentences. Therefore,

the segmentation of non-English text can be error-prone and complex [Nie et al., 2000]. Finally, a

separate problem of inverted indexes is the requirement of document separation. Many aspects of in-

verted indexes are geared towards document-based collections. For example, most similarity metrics

used to solve the ranked document search problem emulate “relevance” by computing statistics at a

document and term level over the text. Overall many aspects of inverted indexes are engineered to

efficiently solve the ranked document search problem over a collection of documents consisting of

terms. Using inverted indexes over other types of text, or to solve other types of text search problems

can therefore be problematic.

A second family of text indexes are based on suffix trees, which do not exhibit the problems

described above. A suffix tree is a data structure that can solve the exact pattern matching problem

over a text in theoretically optimal time [Weiner, 1973]. Conceptually, a suffix tree indexes all suffixes

of a given text by building a trie over every suffix in the text. Text search is performed by walking

the trie from the root node along matching edge labels, to a subtree where each leaf corresponds to

a match of the search pattern in the text. Unlike inverted indexes, the suffix tree does not require

the text to be either document- or term-based. Therefore, a suffix tree can support search for any
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pattern selected during query time. Suffix trees can also be used to efficiently solve the approximate

pattern matching problem [Navarro, 2001]. Unfortunately, suffix trees exhibit one major limitation:

the most efficient implementation uses up to twenty times the space of the original text [Kurtz, 1999].

Suffix arrays can provide the same search functionality as suffix trees. Conceptually, suffix arrays

map the lexicographically sorted suffixes corresponding to the leaves in the suffix tree to positions

in an array. The suffix array, in conjunction with several auxiliary structures, can then be used to

emulate the suffix tree [Manber and Myers, 1993]. Still, both suffix-based indexes exhibit large

space requirements which make them usable for only small text collections when contrasted to the

petabyte-size data sets indexed by inverted indexes.

The space requirements of many data structures can be reduced by using space-efficient — suc-

cinct — alternative representations. Succinct data structures use space comparable to the compressed

representation of the underlying data while providing the same functionality as the equivalent un-

compressed data structure. In particular, succinct representations of suffix trees and suffix arrays

require space equivalent to the compressed representation of the indexed text while providing identi-

cal functionality. The main component of suffix-based succinct text indexes is the Burrows-Wheeler

Transform (BWT). The transform, originally used in data compression, permutes the original text by

sorting all rotations of the text in lexicographical order. Interestingly there exists a duality between

the suffix array and the BWT. The duality allows emulating search with the suffix array while us-

ing the much smaller and more compressible BWT. In practice, during query time, this translates

to significantly smaller space requirements when compared to an uncompressed suffix tree or suffix

array [Ohlebusch et al., 2010]. However, one of the main problems of all succinct text indexes is the

large space required during index construction. From this perspective the problem that succinct text

indexes intended to address — reducing the space requirements — persists. This is especially prob-

lematic as this contradicts the main goal of succinct data structures: reducing the space requirements

of the equivalent uncompressed data structures.

In this thesis we investigate two aspects related to the scalability of succinct text indexes on large

data sets. The main difficulty in indexing larger data sets using succinct text indexes is construction

cost. For fast construction, all suffix-based succinct text indexes require the uncompressed suffix array

to be created during construction. However, more space efficient solutions exist [Ferragina et al.,

2012]. While a succinct text index only requires space equivalent to the compressed representation

of the data set, a regular suffix array requires up to nine times the size of the data set in RAM

during construction [Puglisi et al., 2007]. For example, constructing the suffix array for a 3 GB text

requires up to 27 GB of main memory. In contrast, the resulting succinct text index, depending on

the compressibility of the data set, can be stored and queried using only 1.8 GB of RAM.
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In response to this problem, we investigate an alternative suffix array representation which can

be constructed more efficiently. Specifically we explore a suffix array representation which only par-

tially sorts suffixes, up to a certain depth k, in lexicographical order. This alternative suffix array rep-

resentation is equivalent to a previously unexplored variation of the BWT called the k-BWT [Schindler,

1997; Yokoo, 1999]. We show that the k-BWT can be constructed more efficiently than the BWT. Fur-

thermore we propose a novel external memory construction algorithm for the k-BWT which outper-

forms state-of-the-art external suffix array construction algorithms. Next, we prove that k-BWT-based

succinct text indexes can be used to provide equivalent search functionality. Additionally, we discuss

benefits of the k-BWT index and compare it to traditional BWT indexes. Finally, we propose a new,

variable-depth text transformation: the v-BWT. We show that the transform can be used in succinct

text indexes, and provide applications of the transform to approximate pattern matching.

The second aspect we explore in this thesis is the engineering of succinct text indexes for large-

scale data sets. We provide an extensive evaluation of the performance and resource usage of succinct

text indexes on various data sets. We propose several carefully engineered, cache-efficient, data

structures which form the building blocks of all succinct data structures. In addition, we provide

an extensive empirical evaluation of several commonly used succinct indexes to compare our new

representations. To our knowledge, our improvements result in succinct text indexes that are smaller

or faster than all current state-of-the-art implementations.

Finally, we apply succinct text indexes in the context of IR. We construct indexes over data sets

commonly used in IR evaluation, and compare the performance of succinct text indexes on standard

IR tasks with inverted indexes. We provide the first evaluation of succinct text indexes comparing both

the efficiency and effectiveness using standard IR evaluation metrics. We find that, while succinct

text indexes use more space than inverted indexes, succinct text indexes can be competitive in regards

to efficiency and effectiveness.

1.1 Thesis Structure and Contributions

In Chapter 2 we discuss previous work and basic concepts related to our work. We provide an

overview of the notation, terminology, mathematical concepts, and the experimental setup used

throughout this thesis. We describe the data sets, software, hardware, and common methodology

used for the conducted experiments. We introduce the basic operations rank and select , first on

bitvectors and later on general sequences. Last we discuss text transformations, specifically the BWT,

and introduce several fundamental succinct text indexes and basic concepts of document retrieval.

In Chapter 3, we describe our improvements to the basic building blocks of many succinct text in-
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dexes. Our first contribution is two carefully engineered, cache-efficient data structures solving rank

and select on uncompressed bitvectors. We further provide the first “true to theory” implementation

of Clark’s select data structure [Clark, 1996] and compare it to our newly engineered implementa-

tion. We then propose a new select algorithm for 64-bit words which is the basic building block of

many select data structures operating on 64-bit words. Our second contribution includes practical

enhancements to compressed bitvectors [Raman et al., 2002] which result in significant performance

improvements, in both compression effectiveness and run-time performance. Our final contribution

is an extensive empirical evaluation of our modified data structures. We first evaluate the perfor-

mance of each individual data structure by comparing it to the current state-of-the-art. We find that

our uncompressed bitvector representations are faster for all data sets tested. We further find that

our compressed bitvector representations provide better compression effectiveness and run-time per-

formance, depending on the chosen parameter, than previous implementations. Finally we evaluate

the effect of our improvements on succinct text indexes. We first ensure that our non-optimized im-

plementations are competitive with commonly used test implementations. Finally we show that our

improvements of the “basic building blocks” of succinct text indexes significantly improve the per-

formance of the index in terms of both time and space. Overall, we provide representations that are

either smaller or faster than all existing state-of-the-art implementations.

In Chapter 4, we provide an extensive evaluation of the k-BWT. Our first contribution in this

chapter is a formal definition of the k-BWT and its auxiliary structures and algorithms. We provide an

extensive evaluation of in-memory forward construction algorithms. Our second major contribution

in this chapter is a fast, efficient external memory construction k-BWT algorithm which outperforms

all existing suffix array construction algorithms. Next we propose a new k-BWT reversal algorithm

which explicitly stores the information required to reverse the transform instead of recovering it dur-

ing the reversal process. We analyse the time and space trade-offs of our new algorithm and compare

it to the BWT and k-BWT reversal algorithms. We find that algorithms which perform well in theory

are outperformed by more inefficient algorithms in practice. Last, we provide an extensive evaluation

of the compression effectiveness of the k-BWT when used in a standard compression system.

In Chapter 5, we extend our previous work on the k-BWT. Specifically, we investigate searching

in a k-BWT transformed text. The main contribution is providing a formal proof that performing

backward search using the k-BWT is possible. We further provide a detailed walk-through example of

our approach, discuss theoretical space bounds as well as practical improvements. Next we evaluate

the practical space usage of our approach when compared to a regular inverted file-based k-gram

index. Last we examine the applicability of the k-BWT to emulate a k-gram inverted index to solve

the approximate pattern matching problem.
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Chapter 6 further extends our work on context-bound text transformations. Instead of using a

fixed threshold k, we investigate other sorting thresholds using variable sorting depths. We show

that this new variable depth transform (v-BWT) is reversible and can be constructed efficiently using

modified radixsort algorithms. Next we discuss applying our results of performing search in k-BWT

transformed text to the v-BWT. Last we show that the transform can be used in the context of approx-

imate pattern matching. We discuss and evaluate using the v-BWT in a k-gram index in the context of

approximate pattern matching. Specifically, we show trade-offs between verification cost and index

size for k-BWT and v-BWT based approximate text indexes.

As our last contribution, we apply succinct text indexes within the area of Information Retrieval

in Chapter 7. We use self-indexes in the context of document retrieval to solve the ranked document

search problem defined in Definition 3. Specifically, we use a hybrid self-index approach to solve a

subset of important top-φ document retrieval problems – bag-of-words queries. We evaluate our ap-

proach using a comprehensive efficiency analysis comparing in-memory inverted indexes with top-φ

self-indexing algorithms for bag-of-words queries on standard Information Retrieval text collections

an order of magnitude larger than any other prior experimental study. To our knowledge, this is

the first comparison of self-indexes in the context of document retrieval for standard, realistic sized

text collections using a commonly used similarity metric – BM25. Overall we show that self-indexes

can be competitive in terms of both run time efficiency and effectiveness to standard inverted index

baselines. We find that space usage of character-based succinct text indexes supporting document

retrieval is not competitive to term-based inverted indexes. However, self-indexes can efficiently

support advanced operations such as phrase queries which are computationally expensive to support

using inverted indexes.

In Chapter 8 we discuss our contributions and possible extensions to work presented in this thesis.

In Section 8.1 we consider several areas of future work. We discuss problems with construction

and parallelism of succinct data structures and their basic building blocks as well as extensions and

applications of both context-bound text transformations discussed in this thesis. Finally we discuss

self-indexes in the context of Information Retrieval. We focus on (1) extensions to efficient top-φ

ranked retrieval and (2) using features provided by self-indexes which are computationally expensive

using traditional index types. To conclude we summarize our contributions in Section 8.2.



Chapter 2

Background

Succinct text indexes are generally composed of several underlying data structures. In this chapter

we describe the fundamental techniques used in succinct text indexes, providing the background

and related work for the subsequent chapters of this thesis. We discuss notation used throughout this

thesis in Section 2.1. We then define the two fundamental operations, rank and select , which are used

by many succinct data structures. In Section 2.2 we describe algorithms and data structures which

perform both operations on computer words, uncompressed bitvectors and compressed bitvectors.

General sequences are covered in Section 2.3.

The BWT is an important component in many succinct text indexes and compression systems.

We introduce the BWT and other text transformations in Section 2.4.1. Finally we discuss previous

work and give an overview in the area of suffix-based text indexing in Section 2.5. We discuss

suffix trees and suffix arrays in Section 2.5.1. Building on these data structures we introduce the

main text index used throughout this thesis: the FM-Index. We also briefly discuss compressed

suffix tree representations in Section 2.5.3 and alternative text indexes such as the inverted index in

Section 2.5.4.

One of the application areas we focus on in this thesis is document retrieval, where documents

instead of text positions are returned during search. We discuss document retrieval in Section 2.6 by

providing an overview of two relatively distinct areas of research. We discuss theoretical solutions

to the document listing and top-φ most frequent document retrieval problem. The second area of

document retrieval we focus on is ranked document retrieval which originated from IR. Here our focus

is on practical algorithms and data structures used to increase the performance of inverted indexes

solving the top-φ ranked document search problem. Finally we describe the data sets, software,

hardware, and methodology used for experiments conducted throughout the thesis in Section 2.7.
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2.1 Basic Notation

Throughout this document we use the word RAM model of computation in which all standard arith-

metic and bit operations on word-sized operands take O(1) time. We always assume that a computer

word w is larger than log n, where n is the size of our data set. All logarithms are of base 2 unless

stated otherwise.

The following notation is used to refer to a sequence X of size n: Let X[0 . . . n − 1] be equal

to X . The subsequence starting at position X[i] of length j − i + 1 is referred to as X[i . . . j]. The

symbol stored at position i is indicated by X[i] or xi. The first symbol in the sequence is x0. The last

symbol is referred to as xn−1. All symbols in X are drawn from an alphabet Σ of size σ = |Σ|. The

number of occurrences of symbol c in X is referred to as nc and H0(X) refers to the zero-th order

entropy of X which is defined as

H0(X) =
∑
c∈Σ

nc
n

log
n

nc
.

It represents the average number of bits required to encode a symbol by any compressor of a

source that randomly produces symbols with probability nc/n. For completeness, 0 log 0 = 0 is

assumed in the formula above. Any such compressor requires at least nH0(X) bits to represent

X . We further define Hk(X) as the k-th order entropy of X . The metric, nHk(X), represents a

lower bound on the number of bits required by any compressor assigning uniquely decodable fixed

length codes that depend on the context of a symbol up to length k. A bit sequence (or a bitvector)

B corresponds to a sequence drawn from the binary alphabet Σ = {0, 1} of size σ = 2. When

performing pattern matching we define a pattern P of length m which is to be searched for in a text

T of size n.

2.2 Rank and Select on Bitvectors

Succinct data structures save space by emulating operations of traditional data structures using ba-

sic operations on bitvectors. Two essential functions rank and select used by many succinct data

structures were first introduced by Jacobsen [1988, chap. 5] over a bitvector B of length n as;

rank(B, i, c): Return the number of times symbol c occurs in the prefix B[0..i− 1].

select(B, i, c): Return the position of the i-th occurrence of symbol c in B[0..n− 1].

Where c ∈ {0, 1} represents the binary case. Interestingly, there exists a duality between the two
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functions:

rank(B, select(B, i, c), c) = select(B, rank(B, i, c), c) = i.

In the following we will briefly discuss the basic concepts behind several data structures that

implement rank or select efficiently.

2.2.1 Elementary Bit Operations

In practice, most implementations reduce rank and select to solving both operations on a single

computer word. We refer to these operations as rank64 and select64 as most architectures today use

64-bit words. The rank64 operation is often also referred to as population count or popcnt64(x)

which has been widely studied in literature [Knuth, 2011; Warren, 2003]. Population count refers

to counting the number of one bits in a given computer word x. The classical divide and conquer

approach described by Knuth [2011, p. 143] is shown in Figures 2.1 and 2.2. In the first step, the

word is split up into 2-bit chunks. For each chunk the number of one bits are calculated in parallel

as shown in Line 2 in the pseudo code. Next, two 2-bit sums are combined into a 4-bit sum in Lines

3 − 4. The code uses a combination of shift/and/additions to cleverly, for two 2-bit chunks, sum up

the number of 1 bits. For example, a chunk 1011 is first right shifted and masked to become 0010.

This represents the number of bits in the left 2-bit chunk. The result of this operation is then added

to 0011, the number of 1-bits in the right 2-bit chunk. As the resulting number of 1-bits in a 4-bit

chunk can never exceed 4, the addition is guaranteed to not overflow. In step 3, the four bit sums are

combined into 8-bit sums using the same technique used in the previous steps. Finally, the population

count of the initial word is calculated by calculating adding up the 8-bit sums as shown in Line 6.

The formula calculates x mod 255 which is equal to the w1 + w2 . . .+ w8 [Knuth, 2011].

González et al. [2005] and earlier Warren [2003] find that multiple byte-wise accesses to a lookup

table storing all 28 pre-calculated popcnt8(x) values performs better in practice than more complex

bit manipulation methods such as the one described above. Recently, Suciu et al. [2011] found that

new processors provide efficient hardware support for calculating population count which outper-

forms the lookup table methods used by González et al. [2005].

Unlike rank64/popcnt64, which has applications outside the field of succinct data structures,

select64 has not seen as much attention in the research community. González et al. [2005] find that

performing sequential popcnt8() operations over a computer word followed by sequential bit scan

performs best in practice. Vigna [2008] proposes a select64 algorithm which builds on the divide

and conquer popcount approach shown in Figure 2.2 and is faster than the sequential scan approach
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word32 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0

step 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1

step 2 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0

step 3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1

step 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

Figure 2.1: Folklore divide and conquer approach to calculate the population count of a 32-bit word
(word32) using 3 steps to calculate the 2-bit sums (Step 1), 4-bit sums (Step 2), 8-bit sums (Step 3)
and the final 32 bit population count (Step 4) described by Knuth [2011, p. 143].

1 uint32_t popcount(uint64_t x) {
2 x = x -((x>>1) & 0x5555555555555555ULL);
3 x = (x & 0x3333333333333333ULL) +
4 ((x >> 2) & 0x3333333333333333ULL);
5 x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
6 return (0x0101010101010101ULL*x >> 56);
7 }

Figure 2.2: Pseudo-code of folklore divide and conquer population count calculating the 2-bit sums
in Line 2, the 4 bit sums in lines 3− 4, the 8-bit sums in line 5 and the final population count in line
6 as described by Knuth [2011].

of González et al. [2005]. Unfortunately, there is no direct hardware support for select64 and current

implementations of select64 are roughly six times slower than rank64.

2.2.2 Uncompressed Rank on Bitvectors

A naive solution to answer rank on an uncompressed bitvector B is to scan B in worst case linear,

O(n), time counting bits. This approach requires no additional space. Jacobsen [1988] proposes a

worst case constant time data structure to support rank(B, i, 1) using o(n) bits of additional space.

The same structure can be used to answer rank(B, i, 0) at no additional cost as rank(B, i, 0) =

i− rank(B, i, 1).

The data structure consists of a two-level dictionary shown in Figure 2.3. First, partition B

into chunks of size s = log2 n. For each chunk i store, using log n bits, the precomputed value of
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Rs

Rb . . . . . . . . .

B
i

log n bits

log s bits

RANK(B,i,1)

Figure 2.3: Two-level dictionary structure of Jacobsen [1988] to solve rank in constant time using
o(n) additional space with n/s superblocks Rs of size log n and blocks Rb of size log s.

rank(B, s·i, 1) inRs[i] at a total cost of n/ log n bits. Practical implementations refer to the top level

blocks (Rs) as superblocks [González et al., 2005]. Each superblock is further subdivided into blocks

of size b = log n. For each block j = i mod b, we store the number of one bits at a cost of log s

bits from the start of the corresponding superblock in Rb[j]. Total cost of Rb is n log log n/ log n

bits. The total cost of storing both Rs and Rb is therefore n log logn/ log n+ n/ log n bits ∈ o(n).

To perform a rank(B, i, 1) query, we first calculate the corresponding superblock Rs[i/s]. Next

we calculate the corresponding block Rb[i/b]. Finally, we process the last computer word v in B

containing i. We perform population count (popcnt) on v up to position i by masking the remaining

bits in v. Therefore, rank(B, i, 1) can be computed as Rs[i/s] + Rb[i/b] + rank64(v). Overall we

perform a constant number of operations and thus rank(B, i, 1) can be computed in O(1) time.

In practice, several time-space tradeoffs exist when implementing rank data structures efficiently.

For a 512 MB bitvector, the two-level structure described above has a 34% space overhead. González

et al. [2005] evaluate different chunk sizes s and b to achieve a certain overhead space overhead. For

example, for b = 32 and s = b log n, the total overhead of the two-level structure is 38% in addition

to storing B. Both Jacobsen [1988] and González et al. [2005] further propose a more space efficient

one-level data structure. Instead of storing two levels, only Rs is stored. To calculate rank(B, i, 1),

after accessing Rs[i/s], the bitvector is processed sequentially using the popcnt operation starting at

position bi/sc up until position i. Therefore, rank is calculated in O(s/w) time, where w is the size

of a computer word. González et al. [2005] implement the two-level structure as two separate arrays

Rs and Rb on top of B.
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To perform one rank operation, three memory accesses to different memory locations have to

be performed which could potentially result in 3 TLB and cache misses. Vigna [2008] proposed

interleaving arrays Rs and Rb to reduce the maximum number of cache misses to 2. When the

superblock Rs[i/s] is accessed, all second level blocks are also loaded into the cache as they are

stored adjacent to the superblock. The data structure is engineered as follows; (1) Store B as an array

of 64 bit integers. Additionally store an array of 64 bit integers containing the precomputed rank

values. Each superblock Rs[i] is stored using 64 bits. (2) Using 63 bits or 8 bytes, store seven 9 bit

counts representing the blocks for the corresponding superblock. Using 9 bits per block, counting

the size of a superblock is fixed to 512 bits as there can be at most 29 − 1 one bits in a superblock.

Seven sums are sufficient to subdivide the 512 bit superblock into eight 64 bit words which can be

processed efficiently using popcnt.

2.2.3 Uncompressed Select on Bitvectors

The select operation can solved in O(log n) time by performing log n rank operations over B using

the data structure shown in Figure 2.3. The rank data structure proposed by Jacobsen [1988] can also

perform select inO(log n) time usingO(n) bits of space in addition to storing the bitvector. The first

constant time select data structure was proposed by Clark [1996, Section 2.2.2, pp. 30-32] and later

published by Munro [1996]. We refer to this structure as Clark’s constant time select structure. The

data structure consists of up to three levels similar to the rank structure shown in Figure 2.3 and uses

3n/ log log n +
√
n + log n log logn ∈ o(n) bits of space. Let pi be the i-th one-bit in B. Instead

of storing values at constant intervals (the block size), the position of each s = log n log log n-th

one bit (ps,p2s and so on) in B is stored explicitly, using log n bits each, in an array super using

n/ log logn bits. Unlike the rank data structure, the sampling intervals depend on the position of the

one bits and are therefore not guaranteed to be evenly distributed over B. Depending on the distance

r between two sampled positions pis an p(i+1)s, different samples are stored. If r ≥ lg2 n lg lg n

— the one positions in the range are sparse — thus each one position can explicitly be stored in

long, using log n bits for each log n log logn ones in
[
pis, p(i+1)s

]
, at a total cost of r/ log logn bits.

Otherwise the section is dense, that is r < lg2 n lg lg n, and we further subdivide
[
pis, p(i+1)s

]
. For

every t = log r log log n-th one bit in the range, the position relative to pis is stored, using log r

bits each, in block at a total cost of r/ log log n bits. At most r/ log r log logn relative positions ri
are stored for each superblock. The block is further subdivided if the distance r′ between to relative

positions ri and ri+1 is r′ ≥ log r′ log r log log n. In this case, all remaining positions in [ri, ri+1]

are stored in the mini array using r′/ log logn bits. If r′ < log r′ log r log log n, r′ is asymptotically
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· · · 1 1 · · · · · · 1 1 · · · · · · 1

s-th 1 bit 2s-th 1 bit is-th 1 bit (i+ 1)s-th 1 bit

r ≥ lg2 n lg lg n r < lg2 n lg lg n

ps p2s p3s . . . pis pi+1s pjs

lg n bits

ps+1 ps+2 . . . p2s−1

s positions

log n bits

rt r2t . . . rit

log r bits

r′1 r′2 r′3 r′4 . . . r′t−1 r′t−2 r′t

t relative positions

log r′ bits

r′ = r2t − rt

r = p2s − ps

B

super

long block

mini

Figure 2.4: Three-level dictionary structure of Clark [1996] to solve select in constant time. Store
every s = lg n lg lgn one bit position pi of B in Ss. If the distance r = p2s − ps is larger than
lg2 n lg lgn, store each of the s one bit positions explicitly in Sl using log n bits each. Otherwise
subdivide r and store every t = lg r lg lg n relative on bit position, using lg r bits in Sb Further
subdivide each relative position rt if the distance r′ = r2t − rt is larger than lg r′ lg r lg2 lg n and
store, in Sm, each relative position in lg r′ bits. The total worst case cost is 3n lg lg n bits plus the
cost of storing the final lookup table to process B if the position is not stored explicitly.

also smaller than log n. Thus, the final position can be retrieved by processing B in constant time

during query time. The structure of the data structure is shown in Figure 2.4. It is important to note

that Clark’s structure only provides constant time guarantees in an asymptotic sense as the range in

B that has to be processed is bound above by 16(log log n)4, which can in practice be much larger

than log n [Kim et al., 2005].

González et al. [2005] implement Clark’s structure. However, their structure always uses 60%

overhead whereas Clark’s structure only uses this overhead in the worst case. They find that using

binary search is faster than using Clark’s structure for bitvectors of sizes up to 8 MB.
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B 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0

K = 3
C bitpattern O

0 000 0
1 001 0
1 010 1
1 100 2
2 011 0
2 110 1
2 101 2
3 111 0

C 1 2 1 1 1 2 1 1 3 0 1
O 1 1 2 2 1 0 0 2 0 0 2

Figure 2.5: H0 compressed bitvector representation (BRRR) of Raman et al. [2002] of a given bitvec-
tor B supporting rank ,select and access in O(1) time using quotienting to “hash” blocks of size
K = 3 into class identifiers C and class offsets O.

2.2.4 Rank and Select on Compressed Bitvectors

Previous sections discussed solutions to support operations rank and select in constant time over an

uncompressed bitvector B of size n while only using o(n) bits of extra space. Sparse bitvectors, in

which the number of ones, m, is significantly smaller than n/2 can be stored in compressed form

while still providing the same constant time bounds on rank , select and access . In this section we

discuss a data structure proposed by Pagh [1999] and refined by Raman et al. [2002]. The structure is

commonly known as “RRR” compressed bitvectors after the names of the authors of [Raman et al.,

2002]. It provides constant time rank , select and access over binary sequences using a compressed

representation requiring only dlog
(
n
m

)
e + O(n log logn/ log n) bits of space which is bound above

by nH0(B) + o(n) bits of space using Stirling’s formula. Raman et al. [2002] refer to their structure

as a fully indexable dictionary or FID.

The main technique used in the “RRR” data structure is related to quotienting [Pagh, 1999] and

most-significant-bit bucketing [Raman et al., 2002] commonly used in perfect hashing. All values

hashed to a bucket share the same key, which from an information theoretic point of view, allows

the amount of information that needs to be stored for each key inside the bucket to be reduced. For

example, in Figure 2.5, all bit patterns of length 3 are sorted into buckets depending on the number of

one bits in the pattern. As there are only a certain number of permutations of a bit pattern containing

m ones, we can save space by storing which bit pattern is hashed to the bucket by enumerating all

possible bit patterns and storing only the offset.
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To achieve compression, the original bitvector B is divided into blocks of fixed length K. The

information stored in each block is split into two parts: first the number κi of ones in the block i.

There are
(
K
κi

)
possible permutations of bi containing κi ones. Second, storing an additional number

λi ∈ [0,
(
K
κi

)
−1] is enough to uniquely encode and decode block bi. For example in Figure 2.5, κi =

2, λi = 0 uniquely identifies block 011. Each κi is stored in a vector C[0 . . . n
K ] of dlog(K+ 1)e-bit

integers requiring only n/Kdlog(K + 1)e bits. For example, for K = log(n)/2, the space required

to store C is O(n log log n/ log n) ∈ o(n) bits. Compression is achieved by representing each λi
with only dlog(

(
K
κi

)
+ 1)e bits and storing all λi consecutively in an offset vector O. This implies

the size of each offset λi varies depending on the number of combinations for a specific class type

κi. For example, in Figure 2.5, class type 1 requires 2 bits for each offset while class 0 only requires

1 bit. The total space required to store O therefore is
∑n/K

i=0 dlog(
(
K
κi

)
+ 1)e which is bound above by

nH0(B) + O(n/ log n) bits. To efficiently answer access and rank queries in O(1) time, pointers

into the offset array (O) are stored for every t = log2 n/2 blocks at a cost of O(n/ log n) bits. For

each block bjt the element S[j] contains the starting position of λjt in O and the rank to the start of

the block rank(B, jtK, 1). The position and rank value for each element is then stored inside the

larger block relative to the sampled position (the cost of one element is bound above byO(log log n))

at a total cost of O(n log logn/ log n) bits. For a detailed proof of this space bound see Pagh [1999,

Prop. 4]. Using similar techniques as proposed by Clark [1996] and described in Section 2.2.3,

select can also be performed in constant time usingO(n log logn/ log n) bits of extra space [Raman

et al., 2002]. Finally, the table storing the class – offset – bit sequence mapping can be stored in

K2K + K2 bits which for small K is negligible. Summing up the space usage of all the parts,

the overall a structure supporting rank ,select and access in constant time can therefore be stored in

nH0(B) +O(n log log n/ log n) bits of space.

In practice, both access(B, i) and rank(B, i, 1) can be answered in time O(t), where t is the

sample rate with which positions in O are stored explicitly [Claude and Navarro, 2008]. First we

determine the block index i′ = bi/Kc of bit i. Second, we calculate the intermediate block ĩ = b i′t ct
prior to i′ which contains a pointer into O. Third, the sum ∆ of the binary lengths of each λj

(̃i ≤ j ≤ i′−1) is calculated by sequentially scanning C, adding dlog(
(
K
κj

)
+ 1)e for each block bj .

Finally, bi′ , the block containing position i, can be reconstructed by accessing κi′ and λi′ directly as

they are encoded at position S[̃i]+∆ with dlog(
(
K
κi′

)
+1)e bits in O. Having recovered bi′ from O and

C, we can answer access(B, i) by returning the bit at index i mod K. Operation rank(B, i, 1) can

be answered by adding S[̃i+1], the sum of values in C[t̃i..i′−1], and rank(bi′ , i mod K). In practice

select is performed inO(log n) time by first performing binary search over rank samples in S and then

sequentially scanning the blocks between the target interval Claude and Navarro [2008]. Claude and
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Navarro’s implementation uses blocks of sizeK = 15 and does the decoding of bi′ from (κi′ , λi′) via

a lookup table of size 64 kB. They experimentally show that “RRR” compressed bitvectors perform

rank and select roughly 4 times slower than uncompressed representations discussed above. The

size of their “RRR” compressed bitvectors, BRRR, was consistently roughly 50% of the size of the

original bitvector which however depends on the compressibility of B as the space is bound by

H0(B).

Using Lookup-tables for larger K is not practical. Navarro and Providel [2012] recently pro-

posed a solution to overcome this obstacle by removing the need for the lookup-table and spending

more time on the decoding process: they encode and decode blocks in O(K) time on-the-fly which

improves the compression effectiveness of BRRR by allowing larger K to be used. Golynski et al.

[2007] improve on the space bounds of [Raman et al., 2002] and provide a fully indexable dictionary

using only nH0(B)+O(n log log n/ log2 n) bits. Pǎtraşcu [2008] reduces the space bound further to

nH0(B) +O(n/ logc n) while providing rank and select in O(c) time. Unfortunately, to this point,

these results are only theoretical and no practical implementation exists. Okanohara and Sadakane

[2007] presented an implementation for very sparse bitvectors (the sdarray) following the idea of

Elias [1974] to store monotonically increasing numbers. They provide several other bitvector repre-

sentations supporting rank and select with different time space trade-offs [Okanohara and Sadakane,

2007].

2.3 Rank and Select on Sequences

Many succinct data structures rely on being able to perform rank(B, i, c) and select(B, i, c) on

alphabets larger than two. The rank and select data structures discussed in the previous section only

support both operations over binary alphabets. A wavelet tree can be used to support both rank

and select operations efficiently over larger alphabets. The wavelet tree is the key component of

many succinct text indexes such as the FM-Index and has been studied extensively in previous work.

Here we discuss the basic concept of the wavelet trees, several key results related to space and time

efficiency, alternative data structures and several advanced operations composed of multiple rank and

select operations which provide additional functionality over a sequenced indexed by a wavelet tree.

2.3.1 Wavelet Tree Fundamentals

The wavelet tree was initially proposed by Grossi et al. [2003, Section. 4.2] as an “additional” result

in a paper proposing new compressed text indexes. The basic concept is shown in Figure 2.6. A

sequence T of size n over an alphabet of size σ = |Σ| is decomposed into multiple binary sequences
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0 1 2 3 4 5 6 7 8 9 10 11 12
c h a c a r r a c h a c a

0 1 0 0 0 1 1 0 0 1 0 0 0
S

Broot

#

0 1 2 3 4 5 6 7 8
c a c a a c a c a

1 0 1 0 0 1 0 1 0
Sl
Bl

#

a a a a a c c c c

0 1 2 3
h r r h

0 1 1 0
Sr

Br

#

r r h h

Figure 2.6: Wavelet Tree over the sequence T =chacarrachaca with Σ = |{a, c, h, r}| = 4. The
sequence is decomposed into a binary tree of height log σ by splitting the alphabet at each node into
half. Symbols represented in the right subtree are marked using a bitvector at each level.

at each node of a binary tree. At each node, the symbols associated with the node are represented

with either 0 if they are smaller or equal the median symbol in the alphabet and 1 otherwise. The zero

or one bits are stored in a bitvector at each node in the tree. Symbols associated with zero are mapped

into the left subtree and symbols associated with one are mapped into the right subtree. For example,

in Figure 2.6, the alphabet Σ = {a, c, h, r} is split evenly at each level into two subsets resulting in a

balanced binary wavelet tree of height dlog σe. In the root node, symbols a, c are mapped to the left

subtree and symbols h, r are mapped to the right subtree. This process is repeated recursively in each

subtree. At the leaf level each of the σ nodes correspond to one unique symbol in the sequence. The

number of bits stored in all nodes in any level of the wavelet tree is n. Therefore, at most ndlog σe
bits for the binary sequences in all tree nodes plus the space required to store the tree structure are

required to store the wavelet tree. We refer to the wavelet tree representation of T as WT (T ).

A standard, uncompressed wavelet tree supports both rank(T, i, c) and select(S, i, c) inO(log σ)

time. Additionally, we can retrieve i-th symbol in T , T [i], also in O(log σ) time. This operation

is usually referred to as access(T, i). To support rank and access over T we additionally build

the constant time binary rank structure of Jacobsen [1988] over all bit sequences at a total cost of

o(ndlog σe). We can therefore perform constant time rank operations over the binary sequence in

each of the wavelet tree nodes.

We now briefly discuss how to perform rank(T, 9, c) in the sequence T =chacarrachaca by
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“walking” the wavelet tree shown in Figure 2.6 in O(log σ) time. Let Broot be the bit sequence of

the root node. We know that symbol c is associated with 0 at the root level as it is in the “lower half”

of the alphabet Σ = {a, c, h, r}. Therefore we perform rank(Broot, 9, 0): we count the number of

zeros before position 9 which is 6. This implies that there are 6 symbols in T [0 . . . 9] which are either

a or c as those are the only symbols mapped to 0 in Broot. Next we recurse to the left subtree as we

mapped symbol c to zero. Let Bl be the binary sequence representing the left child of the root node.

We now only examine Bl[0 . . . 5], which corresponds to the first 6 symbols in the node. As symbol

c is mapped to 1 in Bl, we perform rank(Bl, 5, 1) = 3 to get the number of c’s in T [0 . . . 9]. We

performed log σ constant time rank operations on the binary sequences in the wavelet tree nodes at

a total cost of O(log σ).

Next we discuss access(S, i). Being able to perform access(S, i) implies that we can recover T

from WT (T ) by performing T [0] = access(S, 0) to T [n− 1] = access(S, n− 1). We now show the

process of recovering T [8] from WT (T ) using the sample wavelet tree shown in Figure 2.6. First,

we access Broot[8] = 0 in constant time. This implies that the symbol T [8] is mapped to 0 in root

of the wavelet tree. Next we perform rank(Broot, 8, 0) = 6 to determine the number of symbols in

T [0 . . . 8] also mapped to zero. We now recurse to the left child of the root node and accessBl[5] = 1

again in constant time. We access the sixth symbol in Bl as 6 symbols in T [8] is the sixth symbol in

T [0 . . . 8] mapped to zero. As Bl[5] = 1, we recurse to the right sub tree of the current node to find

that T [8] = c. Overall we again performed log σ constant time operations at a total cost ofO(log σ).

Last we discuss select(T, i, c). To support the operation inO(log σ) time we additionally require

constant time select operations on binary sequences provided by the three-level structure proposed

by Clark [1996] discussed in detail in Section 2.2.3. We again use the example shown in Figure 2.6 to

show how to perform select(T, 3, c): Return the position of the third c in T . Assume we can access

the leaf node corresponding to symbol c in constant time. We now perform a bottom-up traversal of

the wavelet tree starting at c’s leaf node in the wavelet tree. First, we know that in the parent node

of c’s leaf node, all occurrences of c are marked in Bl with 1 as c’s leaf node is the right child of the

parent node. Therefore we perform select(Bl, 3, 1) = 5 to determine what is the position of the third

1 in Bl. This implies that the position of the third c in T corresponds to the sixth (position 5 in Bl
corresponds to the sixth element in Bl) 0 in Broot. We therefore perform select(Broot, 6, 0) = 8 to

answer select(T, 3, c) = 8 in O(log σ) time.

In practice the wavelet tree is not stored explicitly using pointers and nodes but the bit sequences

at each level are concatenated [Claude and Navarro, 2008] resulting in a pointer-less tree representa-

tion. This requires a continuous alphabet. In practice, all symbols in T are therefore remapped into a

continuous range [0 . . . σ− 1]. Using a continuous alphabet, the tree shape can further be determined
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implicitly during query time at the cost of additional rank operations [Claude and Navarro, 2008].

2.3.2 Alternative Wavelet Tree Representations

Wavelet trees have been a very active research area since the initial paper by Grossi et al. [2003].

There exist several extensive surveys giving an exhaustive overview of wavelet trees in prior art [Grossi

et al., 2011; Navarro, 2012; Christos, 2012]. Here we briefly discuss several key results related to

wavelet trees and alternative representations.

Compression

The standard binary wavelet tree using the uncompressed rank and select support structures of Clark

[1996] and Jacobsen [1988] uses n log σ+o(n log σ) bits of space while supporting rank , select and

access in O(log σ) time. Various techniques in previous work exist to improve both the time and

space bound of wavelet trees. Most of these techniques either change the shape of the tree or the

underlying bitvector representation.

Using Huffman codes [Huffman, 1952] to encode each symbol in T instead of using fixed length

codes in [0 . . . σ − 1] results a Huffman-shaped wavelet tree. The size of the wavelet tree is there-

fore reduced to n(H0(T ) + 1) + o(n(H0(T ) + 1)) bits as the average length of each symbol is

at most H0(T ) + 1 [Mäkinen and Navarro, 2004]. Assuming operations on symbols (for exam-

ple rank(T, 5, f)) are performed with the same probability as their frequency in T , a Huffman-

shaped wavelet tree, on average, further provides improved query performance for all operations of

O(H0(T ) + 1) which can however become O(log n) in the worst case. In their initial paper Grossi

et al. [2003] remarked that independent of the shape, compressing the bitvectors inside the wavelet

tree will also result in wavelet tree being H0 compressed. Using the H0 compressed bitvectors dis-

cussed in Section 2.2.4 a balanced wavelet tree uses only nH0(T ) + o(nH0) bits of space while pro-

viding O(log σ) query performance. The same space complexity can be achieved using a Huffman-

shaped wavelet tree using uncompressed bitvectors. In practice, using a Huffman-shaped wavelet

tree is much faster, as the average query time is decreased (O(H0(T ) + 1) compared to O(log σ))

and operations rank and select on uncompressed bitvectors is much faster than their compressed

counterparts [Claude and Navarro, 2008].

Other time and space trade-offs have been proposed. Grossi et al. [2011] propose using Hu-

Tucker codes [Hu and Tucker, 1971] instead of Huffman codes to create a Hu-Tucker shaped wavelet

tree. Ferragina et al. [2007] propose multi-ary wavelet trees with a branching factor of z to obtain

run-time complexities ofO(1 + logz σ) at increased space complexity. Grossi et al. [2011] propose a
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run-length encoded wavelet tree. Navarro et al. [2011] use the grammar compressor RePair [Larsson

and Moffat, 2000] in conjunction with wavelet trees to exploit repetitions in T to achieve better space

bounds. The wavelet tree is the main component of many succinct indexes where a wavelet tree over

BWT (T ) is used to achieve higher order entropy (Hk(T )) space bounds. This is discussed in detail

in Section 2.5.

Alternatives to Wavelet Trees

Claude and Navarro [2012a] propose the wavelet matrix, which reorders the bitmaps in a traditional

wavelet tree to allow, in practice, faster access operations while providing matching performance in

both theory and practice for rank and select operations. Alphabet partitioning proposed by Barbay

et al. [2010] uses a wavelet tree as part of a more complex data structure which repartitions the

alphabet into classes based on the frequency of each symbol. This technique is very similar to the

quotienting technique described in Section 2.2.4. It provides access and rank in O(log log σ) time

while supporting select in constant time at total space complexity of nH0(T )+o(n)(H0(T )+1) bits.

Golynski et al. [2006] propose two data structures for large alphabets that do not use wavelet trees:

The first structure supports only rank and select in O(log log σ) time at a cost of nH0(T ) + O(n)

bits. The second structure supports rank and access in O(log log σ) time and select in O(1) time at

a cost of n log σ + o(n log σ) bits. Claude and Navarro [2008] evaluate the structures of Golynski

et al. and find that they are competitive for large alphabets but use up to twice the space of the most

efficient wavelet tree representation.

2.3.3 Advanced Operations on Wavelet Trees

Three advanced operations – consisting of multiple rank calls within a wavelet tree – provide addi-

tional functionality when using a wavelet tree over a sequence of numbers instead of text symbols.

Quantile Queries

Until recently wavelet trees have only been used to perform rank operations on text characters. Gagie

et al. [2009] proposed range quantile queries (RQQ) over balanced wavelet trees. RQQ return, for

a given rank, the number with that rank in a given sublist T [i . . . j] in O(log σ) time. For example,

the query RQQ(T [i, j], j−i+1
2 ) would return the median in the range [i, j] of sequence T . Range

Quantile Queries therefore allow access to any position in a subrange [i, j] of T as if T [i, j] were in

sorted order. Figure 2.7 shows the balanced wavelet tree over sequence T =7012271385649 for
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Figure 2.7: Range Quantile Queries (RQQ) on balanced Wavelet Trees over the sequence
T =7012271385649 in the range T [4, 9] for the rank 3 which represents the item at position
4 in the sorted representation of T [4, 9].

the quantile query RQQ(T [4, 9], 3) in detail. In this example, we are interested in the value of the

item T [8] as if T [4, 9] were sorted.

Given a range T [i, j] and a balanced wavelet tree over T , we determine the value of “rank” r as

follows. Using two binary rank queries at each level we determine how many 0 bits are present in the

current range. For example, in Figure 2.7, there are three zero bits in the root level of the wavelet tree

corresponding to range T [4, 9]. Let r = 3 be the desired “rank” for our example, which corresponds

to the fourth position, in the sorted representation of T [4, 9]. As there are only 3 zero bits in the

root level corresponding to T [4, 9], we can infer that the number we are looking for is represented by

one in the root level. So, recurse to right subtree, map the range, and perform the same comparison

until we reach a leaf node. Note that we subtract the number of zeros we have seen from r before

recursing. Overall we perform O(log σ) binary constant time rank operations to answer the quantile

query.

Gagie et al. [2009] suggest to use quantile queries to solve the Document Listing Problem first

discussed by Muthukrishnan [2002]. Another interesting property of quantile queries is the fact that
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the RQQ operation, without extra cost, also returns the frequency of the item. Therefore, one can,

using multiple RQQ queries, traverse the sub-array T [i, j] in sorted order.

Top-φ Most Frequent Items

Culpepper et al. [2010] propose two algorithms to return the top-φ most frequent items in multiple

given sub-ranges T [i, j],T [f, j] . . . , T [a, b]. They show that both algorithms can be competitive with

inverted index-based top-φ retrieval systems when solving the top-φ Document Listing Problem (see

Section 2.6.2).

The first algorithm, top-φ GREEDY retrieval, uses a priority queue to traverse the wavelet tree in

a greedy fashion by mapping all ranges [i, j] . . . [a, b] depending on the size of the remaining range.

As ranges are mapped to the different sub-trees in the wavelet tree, they become smaller. If only the

largest ranges are being processed, it is guaranteed that the first φ leaves visited will correspond to

the φ most frequent items in all ranges. However, in the worst case the greedy approach will explore

the complete tree similar to a depth-first traversal.

The second algorithm, QUANTILE probing, exploits properties of quantile queries to return the

top-φ most frequent items in a range T [i, j]. The main idea behind the algorithm is as follows. If

S[1..m] is a sorted array of numbers and a number occurs more than m/2 times, it has to be stored

in position S[m/2]. The same logic applies for an item that occurs at least m/4 times: an item

occurring at least m/4 times has to be stored at position S[m/4], S[m/2], S[3m/4]. Interestingly,

for an unsorted array T , we can query positions m/2 or m/4 as if T was sorted using range quantile

queries inO(log σ) time. Therefore, quantile probing retrieves the top-φmost frequent documents by

repeatedly issuing RQQ queries within a range T [i, j] until enough positions are queried to guarantee

the top-φ most frequent items have been “seen”. In their experimental evaluation Culpepper et al.

[2010] show that greedy retrieval outperforms quantile probing while being significantly faster than

other document listing solutions.

Set Intersection

Gagie et al. [2012c] propose several advanced Information Retrieval algorithms based on wavelet

trees. They show how to perform set intersection using a wavelet tree using two algorithms. The first

algorithm, similar to greedy top-φ retrieval, maps the ranges to intersect from the root node to all sub-

trees until a leaf node is reached. The second algorithm uses the wavelet tree to emulate finger search

within the ranges as if they were sorted. They show that their algorithms approaches the lower bound

of alternation, which measures the number of times switching occurs when obtaining the union of
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two sorted sequences [Barbay and Kenyon, 2002].

2.4 Text Transformations

Text transformations are often used to provide better compression in storage systems as well as text

indexes. The Burrows-Wheeler Transform is one of the main transform used in many compression

systems and succinct text indexes. The transform was initially proposed by Burrows and Wheeler as

part of a compression system which utilizes the fact that the transform is reversible and at the same

time makes the input text more compressible. In this section we provide an overview of the transform,

the inverse transform, a more in depth analysis of several important properties of the transform as well

as an overview similar text transformations.

2.4.1 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) was published in 1994 by Michael Burrows and David

Wheeler as part of an alternative compression system to LZ compression [Burrows and Wheeler,

1994]. The transform itself was discovered by David Wheeler in 1983 but was not published until

10 years later [Burrows and Wheeler, 1994]. Unlike LZ compression which sequentially processes a

given input, a BWT-based compression system processes the input in blocks. Each input block T of

size n is processed as follows. First, all cyclic rotations of the input block are stored in a conceptual

matrixM of size n×n as shown in Figure 2.8. Next, all rotations are sorted lexicographically to pro-

duce a row-ordered matrixM. The BWT of the input block can then be retrieved from the last column

ofM. Instead of sortingM at the worst case cost of O(n2) time and space, Burrows and Wheeler

further show that instead, the sorting step can be reduced to sorting all suffixes of a modified input

string T ′, where a symbol lexicographically smaller than all symbols occurring in T is appended to

T . This ensures that all suffixes are unique and no two suffixes are equal. In previous work, this

symbol is often depicted as ‘$’. To sort the input suffixes, Burrows and Wheeler build and traverse

a suffix tree in linear time which is not applicable in practice due to large constant factors. Instead

constructing a suffix array can be used to sort the suffixes in linear time using roughly 9n space.

The BWT can be reversed in linear time without the need to store any additional information.

Conceptually, this is done by partially reconstructingM from T bwt. First, the first column inM is

recovered by performing a counting sort on T bwt in linear time. Second, an “LF”-mapping which

maps the symbols of T bwt in the last column (L) to their corresponding positions in the first column

(F ) is created in linear time. Finally, using this mapping and the position of “$” the T ′ can be

reconstructed in reverse order in linear time from T bwt as follows. Consider the example transform
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Figure 2.8: Forward BWT of text T =chacarachaca$ in two steps. In the first step (1), all
rotations of the input text are stored in the rows of matrix M, which are then sorted in step (2) in
lexicographical order. The Burrows-Wheeler transformation of the input text T can then be obtained
from the last column of the sorted matrixM as T bwt =achhrcaa$acca.

in Figure 2.8. The position of “$” is in row 8. Thus symbol “$” is recovered and the LF mapping is

used to jump to row LF [8] = 0. To process the current row 0, symbol 0 is prepended to the output

T bwt[0] = ‘a’ and next row LF [0] = 6 is processed. Overall, n jumps are performed to recover

T ′ =chacarachaca$ in reverse order from T bwt =achhrcaa$acca in O(n) time without the

need to store any additional information. The j = LF [i] mapping can be computed on-the-fly using

the formula:

j = Q[c] + rank(T bwt, c, i).

where c = T bwt[i] and Q[c] corresponds to starting position of symbols c in F . Using a wavelet

tree this can be computed in O(log σ) time. The process is visualized in Figure 2.9. The string T is

recovered from T bwt =achhrcaa$acca as follows. Initially set s = I = 8, the position of ‘$’ in

T bwt and thus the position of the original text T inM. Thus T [n− 1] = T bwt[s]. Next the preceding

row inM is determined by performing s = LF[s] = 0. Therefore T [n− 2] = T bwt[0] is recovered.

This process is performed until all n symbols of T are recovered.
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Figure 2.9: Reverse BWT recovers the original text T =chacarachaca$ in three steps from
T bwt =achhrcaa$acca. In the first step (a) the first column ofM is recovered by sorting T bwt.
In the second step (b), the mapping between the positions of the symbols in the last column L, and
the first column F is created. Last, the LF -mapping is used to recover T in reverse order from T bwt

by jumping within the LF -mapping starting at position I of “$” in T bwt.

Burrows and Wheeler initially intended their transform to be used to improve the compression

effectiveness of a given text by permuting the text to group symbols with a similar context together.

Each row inM represents one position in the text. The last column is the transform output. Each row

is a cyclic rotation of the initial text. Therefore, sorting each row lexicographically groups symbols

in the BWT with the same context together. For example, symbol “h” is always preceded by symbol

“c” in T . Therefore, they are grouped together in T bwt. For English text, grouping together symbols

with similar context tends to generate long runs of identical symbols in T bwt. These runs make T bwt

more compressible, which can then exploited in subsequent compression steps. However, over time

many other applications and improvements of the BWT have been discovered which we will elucidate

below.

The most commonly used BWT compressor, bzip2, was originally developed by Julian Se-

ward. 1 The compressor splits the input text into blocks of sizes 100 kB (-1) up to 900 kB (-9) to

achieve various compression ratios and uses, as suggested by Burrows and Wheeler, Move-To-Front

and Huffman coding. Seward subsequently proposed several improvements to the implementation of
1available at bzip2.org
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the forward and reverse transform [Seward, 2000; 2001]. One of the main problems with BWT inver-

sion is the non sequential “jumping” required when processing the LF-mapping. This causes cache

misses as pointed out by Seward [2001]. Recently, Kärkkäinen and Puglisi [2011a] and Kärkkäinen

et al. [2012] provide cache efficient BWT reversal algorithms which use superalphabets (combining

two symbols into one) and parallel recovery to improve the recovery process by up to a factor of 4.

A second problem of BWT reversal is space usage. The LF-mapping uses n log n bits of space which

is one of the reasons bzip2 only processes small blocks of the text at a time. Recently, Ferragina

et al. [2012] show how to perform BWT inversion using sequential scans in external memory. Several

“medium” space inversion algorithms have further been proposed by Kärkkäinen and Puglisi [2010].

The forward BWT transform can be reduced to suffix sorting. Therefore, recent advances in fast,

practical suffix array construction can also speed up the forward BWT transform [Maniscalco and

Puglisi, 2006; Puglisi et al., 2007]. Kärkkäinen [2007] propose a BWT construction algorithm using

only 2n space which uses block wise suffix array construction and merging. Ferragina et al. [2012]

show how to construct the BWT in external memory. Sirén [2009] propose a compressed suffix array

construction algorithm which can be used to construct the BWT in small space and in parallel. Bauer

et al. [2011] show how to construct the BWT for a collection of strings, a common scenario in DNA

sequencing, in small space.

2.4.2 Applications of the Burrows-Wheeler Transform

The Burrows-Wheeler Transform has many applications in text processing and storage. Here we

focus on the three common applications of the BWT.

Compression

Burrows and Wheeler initially proposed their transform to be used as the first step in a compres-

sion system [Burrows and Wheeler, 1994]. Seward provides bzip2, which is the most popular

BWT-based compressor. All major operating systems and compression tools can decompress bzip2

compressed files. Most BWT-based compression systems consist of a sequence of processing steps as

shown in Figure 2.10. First the text is transformed using the BWT. Next the runs in the transformed

output are used to skew the alphabet using a symbol ranking algorithm which is then either run-length

encoded or directly compressed using an entropy coder such as Huffman.

Many “post-BWT” algorithms have been proposed to increase the effectiveness and efficiency

of BWT based compressors. The most common second stage algorithm is move-to-front encoding

proposed by Bentley et al. [1986]. Gagie and Manzini [2007] show that commonly used move-
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Figure 2.10: BWT-based compression systems with the BWT as the first step followed by a second step
a symbol ranking algorithm to skew the alphabet with optional run length encoding. The transformed
and processed text is encoded using an entropy coder such as Huffman to produce the compressed
output.

to-front encoding is not optimal. Fenwick [1996] evaluates the compression effectiveness of BWT-

based compressors on a standardized compression test corpus. Abel [2010] evaluates several second

stage BWT post-processing algorithms. Deorowicz [2002] proposes weighted frequency counting in

combination with a higher-order arithmetic coder which to our knowledge results in the most effective

BWT-based compressor. Most “post-BWT” algorithms try to exploit the locality of BWT symbol runs

to skew the alphabet of the string to be compressed by the entropy encoder. This process is related

to the list-update problem which has been studied in both theory and practice in relation to memory

paging and scheduling [Sleator and Tarjan, 1985; Bachrach and El-Yaniv, 1997; Albers and Lauer,

2008]. Transforming and compressing words instead of characters has further been studied by Moffat

and Isal [2005].

Manzini [2001] shows that BWT-based compressor can achieve the k-th order entropy (Hk) within

a constant factor (5 + ε) for any input string. Kaplan et al. [2007] provide a simpler analysis while

providing lower bounds for different BWT-based compression systems. Ferragina et al. [2005] pro-

pose Compression Boosting, which uses the BWT to optimally partition any input text into blocks

which can then be compressed more effectively using an arbitrary compressor such as LZ77.

Text Indexing

Recently, the BWT has become an integral part in many text indexing data structures which allow

searching in a compressed representation of the input text without the need to decompress the index.

These text indexes are described in more detail in Section 2.5.

Sequence Alignment

The BWT has found many applications in Bioinformatics. Langmead et al. [2009] propose the widely

used sequence alignment tool “Bowtie” which could align 25 million short DNA sequence reads per

“CPU hour” in 2009. The tool is built on top of a succinct text index proposed by Ferragina and
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Manzini [2000] which uses the BWT as a key component. Li and Durbin [2009] propose the “BWA”

tool which, similar to “Bowtie”, uses a BWT-based text index to provide sequence alignment up to 10

times faster than existing tools at the time. Li and Durbin [2010] combine a BWT-based index with a

Smith-Waterman dynamic programming algorithm to allow efficient long sequence read alignment.

Many more tools like SOAP2/WCD/WCD-Express exist which take advantage of the duality between

the BWT and suffix arrays to provide fast, space efficient sequence alignment tools [Li et al., 2009;

Hazelhurst and Liptk, 2011]

2.4.3 Context-Bound Burrows-Wheeler Transform

When constructing the BWT via suffix array construction, one of the main problems is the worst case

O(n) cost of a single suffix comparison. Independently, Schindler [1997] and Yokoo [1999] propose

to limit the number of characters to be compared during a single suffix comparison to at most k. This

implies that the matrix M is only sorted up to depth k. We refer to the partially sorted matrix as

Mk. The context based on which the symbols in the transform are ordered by is therefore also bound

by k. The transform is commonly referred to as the Context-Bound Burrows-Wheeler Transform or

k-BWT.

The difference between the k-BWT output and the full BWT output is minor. The only difference

between both transforms occurs in context groups larger than one. If all context groups are of size

one, the output of the k-BWT is equal to that of the BWT. This is only guaranteed for k = n. However,

even for small k of around 10, the output is very similar for most input texts which results in similar

compression effectiveness when replacing the BWT with the k-BWT even for small k [Schindler,

1997]. We explore the k-BWT in more detail in Chapters 4 and 5.

2.4.4 Alternative Text Transformations

Several other text transformations have been proposed for specific use cases. We briefly discuss these

transformations and how they relate to the full BWT.

RadixZip

Vo and Manku [2007] propose RadixZip, a transform used for permuting column based data such as

database tables or log files. Similar to the BWT, data is grouped together if they have similar context.

The context in RadixZip is restricted to the previous columns which can improve the compression

effectiveness over the BWT for highly correlated token streams.
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XBW

Ferragina et al. [2006] propose the XBW, a BWT like transform for compressing (and searching) XML

data. Similar to RadixZip, the data is sorted based on the context contained in the hierarchical tree

structure. The transformed text can be used to answer certain XQuery queries efficiently.

Generalized Radix Permute Transform

Inagaki et al. [2009] propose the Generalized Radix Permute transform (GRP) which generalizes the

k-BWT, RadixZip and the full BWT via two parameters l and d, where l = 1 and d = 1 represents the

full BWT. The k-BWT is represented as l = 1 and d = k. RadixZip is represented as d = 0. Yokoo

[2010] additionally provide a linear time inverse GRT transform.

Geometric Burrows-Wheeler Transform

Chien et al. [2001] propose the Geometric Burrows-Wheeler Transform (GBWT). The transform

converts a given text into a sets of points on a two dimensional plane. The authors show that queries

on the converted point set can be done more efficiently in external memory. They further show a

connection between range searching in two dimensional space and text indexing. In addition, the

authors propose a reverse transform, Points2Text, which transforms a set of points into a text string.

Dynamic Burrows-Wheeler Transform

Salson et al. [2008] propose the Dynamic BurrowsWheeler Transform. They show how to insert,

delete and substitute symbols and substrings in a BWT transformed text by reordering the output. In

their experiments they show that reordering can be cheaper than rebuilding the complete BWT from

scratch up to a certain number of insertions and deletions.

2.5 Succinct Text Indexes

Succinct text indexes have become a large part of Stringology research in recent years. Suffix arrays

and suffix trees have numerous applications in the area of Bioinformatics and provide the foundations

of most succinct text indexes today. Here we give a brief overview of the main ideas used in succinct

text indexes today. First we briefly review suffix trees and arrays. Next we introduce their compressed

equivalent, the compressed suffix array and suffix tree. Last we discuss alternative succinct text

indexing techniques and succinct text indexes in practice.
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Figure 2.11: Suffix tree of text chacarachaca$ with leaf notes corresponding to the equivalent
suffix array ordering.

2.5.1 Suffix Arrays and Suffix Trees

Suffix Trees and Suffix Arrays are the two classical indexing data structures often discussed in text-

books. Suffix Trees are based on the notion of a trie. A trie can be seen as a prefix tree, where each

leaf node xi in conjunction with all edges on the path from the root node to xi – the prefix – represent

a given element in the trie [Knuth, 1998]. Each edge represents one symbol in the prefix of the string

represented by node xi. The leaf nodes of a trie represent the elements stored in the trie, whereas

all internal nodes represent prefixes of these elements. Given a text T , a suffix trie represents all

suffixes in T as a trie structure where each leaf node represent a suffix starting at a specific position

in T . Weiner [1973] first showed how to use such a trie structure (in his paper called a “bi-Tree”) to

perform pattern matching for a pattern P of length m in time linear to the size of the pattern. Starting

from the root node, we can walk the suffix trie in O(m) time to arrive at a node representing all

suffixes in T prefixed by P . A suffix tree over a text T extends the idea of a suffix trie by merging

all nodes in the trie which have only one child. This implies that edge labels can now be multiple

characters long. A similar idea was used in the PATRICIA tree proposed by Morrison [1968]. Suffix

trees are also called compact prefix trees or radix trees. Figure 2.11 shows the suffix tree over the text

chacarachaca$. The leaf nodes show the positions of each suffix in T . The concatenated edge

labels represent the suffix at each leaf node. Unlike suffix tries, suffix trees are guaranteed to only

have O(n) nodes and can be constructed efficiently in O(n) time [Weiner, 1973; Ukkonen, 1995].

Similar to pattern matching in tries, we walk the tree starting from the root node. However, for
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a pattern P , we are not guaranteed to stop at a node in the suffix tree as transitioning between nodes

can result in multiple character comparisons per transition. For example, searching for pattern P =

acarad in the suffix tree shown in Figure 2.11, we first transition from the root node using symbol

a. Next we transition using symbol c. Next we transition using ra. Our comparison stops during

the transition with a mismatch at position P [5] which implies that P does not occur in T . Overall

matching can still be performed in O(m) time. Unfortunately, suffix trees are generally considered

impractical due to their large space requirements in practice. The most efficient implementations

require at least twenty times the space of the original text [Kurtz, 1999].

Manber and Myers [1993] proposed suffix arrays as a simplification to suffix trees. A suffix

array (SA) over a text T of length n consists of a permutation of the positions of all suffixes in

T . The permutation is obtained by sorting all suffixes in T in lexicographically increasing or-

der. The same order can be obtained by traversing the suffix tree leaves from left to right in Fig-

ure 2.11. Therefore, for our sample string chacarachaca$ the suffix array consists of SA =

[12, 11, 9, 2, 6, 4, 10, 3, 0, 7, 8, 1, 5]. Storing the suffix array takes n log n bits of space, which when

compared to the most efficient suffix tree implementation is only four times (for 32 bit or eight times

for 64 bit) larger than the original text. Suffix arrays can be built efficiently in theory and practice.

In 2003 several linear time suffix array construction algorithms were proposed [Ko and Aluru, 2005;

Kärkkäinen and Sanders, 2003]. In practice, the fastest algorithms have a worst case complexity of

O(n2 log n) and generally use a technique called induced suffix sorting [Itoh and Tanaka, 1999; Nong

et al., 2011]. Recently, Nong et al. [2011] proposed a worst case linear time suffix array construc-

tion algorithm which also uses induced suffix sorting while still providing good theoretical bounds.

Unlike all other proposed linear time suffix array construction algorithms, Mori [2012] show that the

algorithm proposed by Nong et al. [2011] is also competitive in practice. Overall, suffix arrays can

be constructed roughly six times faster than suffix trees using less space [Puglisi et al., 2007].

Searching for a pattern P of length m in T using a suffix array is more complicated than in a

suffix tree. The simplest approach performs two binary searches over SA, at each step performing a

O(m) string comparison between the current position in the suffix array T [SA[i]] and P . The two

binary searches determine a range SA[sp, ep], where all suffixes of T are prefixed by P . Counting

the number of occurrences of P in T can therefore be done in O(m log n) time. This bound can be

reduced to O(m + log n) using the Longest Common Prefix (lcp) array [Manber and Myers, 1993].

The lcp is commonly defined as follows. Let lcp(X,Y ) be the length of the common prefix of two

strings X and Y . The lcp array is then defined as

lcp[i] = lcp(T [SA[i− 1]], T [SA[i]]).
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for i ≤ 1 < n and lcp[0] = −1. The lcp array can also be constructed efficiently in theory and

practice. Kasai et al. [2001] propose a linear time construction algorithm. Gog and Ohlebusch

[2011] propose the currently fastest practical algorithm which however has a worst case complex-

ity of O(n2). The lcp array can be used to avoid performing O(m) character comparisons at each

step of the binary search process as we can determine the length of the matching prefix of the pat-

tern and the suffixes within the range of the binary search process. This reduces the search time to

O(m + log n) [Manber and Myers, 1993]. Every algorithm using a suffix tree can be implemented

with the same asymptotic complexity using a suffix array with the help of the lcp array and other

axillary data structures [Abouelhoda et al., 2004].

Interestingly, there exists a duality between the suffix array and the Burrows-Wheeler Transform

(BWT) discussed in Section 2.4.1. This duality is the basis of many succinct text indexes and is

defined as

T bwt[i] = T [SA[i]− 1 mod n].

Therefore, the BWT can be constructed efficiently by constructing the suffix array over T and applying

the formula above to obtain T bwt from T and SA.

Many succinct text indexes are measured by their ability to perform certain operations efficiently.

Generally the following three operations are supported over a text T of length n given a pattern P of

length m;

count(P,m): Return the number of times pattern P occurs in T [0..n− 1].

locate(P,m): Return all positions of pattern P in T [0..n− 1].

extract(i, j): Extract T [i..j] of length l = j − i+ 1 from the index.

An uncompressed suffix array in conjunction with the lcp array can solve count inO(m+log n)

time, extract in O(l) time by accessing T [i..j] directly and locate in O(m+ log n+ occ) time

where occ is the number of occurrences of P in T which also determines the size of the range 〈sp, ep〉
in SA.

2.5.2 Compressed Suffix Arrays

The functionality of suffix arrays can be provided in compressed space. We focus on two main index

types: the FM-Index proposed by Ferragina and Manzini [2000] and the compressed suffix array

of Sadakane [2003]. We realize there have been many improvements to these basic index types as

succinct indexing has been a very active field of research over the past decade. However, many of
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these indexes directly build on these two ground breaking indexing data structures which are still

used today.

FM-Index

Ferragina and Manzini [2000] proposed what is now called the FM-Index. an opportunistic index data

structure whose space usage depends on the compressibility of the text T to be indexed. Today, these

data structures are commonly referred to as compressed text indexes. The space usage of compressed

data structure is usually defined as a function of the compressibility (H0 or Hk) of the text. If the text

to be indexed is more compressible, the compressed text indexes requires less space. They exploit

the duality of the BWT and the suffix array described above by proposing a new search algorithm:

backward search. Backward search uses the BWT to emulate searching in a suffix array. That is, for

a given pattern P of length m, the range 〈sp, ep〉 in the SA of T is determined by performing rank

operations over the BWT. An example of backward search is shown in Figure 2.12 for the pattern

P = cha and our sample text T =chacarachaca$. Backward search works as follows. A row

i in M represents the suffix array position SA[i] of a suffix S$. If T bwt[i] = c, we know that the

suffix SA[i] is preceded in T by c: cS$. Therefore, performing j = LF [i] will return the row j inM
prefixed by cS$. The backward search algorithm maintains a range 〈sp, ep〉 representing the rows in

M prefixed by a suffix of the pattern P [i..m − 1] at step i. After m steps, we have determined all

rows inM prefixed by P [0..m− 1] which corresponds to the same range in the SA of T .

First we determine the range in M starting with the last symbol in P by using the cumulative

count array Q which marks the starting position of each symbol in F : sp = Q[c] and ep = Q[c +

1] − 1. In our example, sp0 = 1 and ep0 = 5. Next we perform two rank operations, counting the

number of times the second last symbol (P [1] = h) occurs before 〈sp0, ep0〉 and within the range.

This operation computes the LF mapping for the first and last occurrence of the currently processed

suffix of P . Recall the LF mapping discussed in Section 2.4.1, which is used to recover T from

T bwt by stepping through the BWT of the text in reverse order. Backward search emulates the LF

mapping by performing rank operations on T bwt instead of storing the mapping explicitly. The new

range 〈sp1, ep1〉 is computed by adding to the starting position of all rows inM prefixed by P [1] = h,

Q[h], the number of times h occurs before sp0 in T bwt which is 0. Therefore sp1 = Q[h] = 10. Next,

ep1 is mapped by counting the number of rows in 〈0, ep0〉 ofM preceded by h, which is equivalent

to the number of times h occurs in T bwt[0, ep0]. In the last step, we computer the number of times

symbol P [0] = c occurs before T bwt[sp1] and within T bwt[0, ep1] to retrieve all rows 〈sp2, ep2〉 in

M prefixed by P = cha. The pseudo code for the algorithm is shown in Figure 2.13.
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Figure 2.12: Backward search procedure for P = cha and T =chacarachaca$ by maintaining
the range 〈sp, ep〉 while processing P backwards.

Overall, we perform O(m) rank operations which can be performed in O(m log σ) total time

using a wavelet tree [Ferragina et al., 2004]. Different time and space trade-offs exist depending on

which wavelet tree representation is used. In the original paper, Ferragina and Manzini use a different

structure to perform rank on the compressed representation of T bwt as the wavelet tree had not been

proposed yet. They proposed a technique similar to the rank structure shown in Section 2.2.2 over a

compressed representation of T bwt which uses move-to-front encoding, run-length encoding and an

entropy coder for each symbol c in T bwt. Querying the structure is very complex and only efficient in

theory [Navarro and Mäkinen, 2007]. The wavelet tree-based FM-Index however is very simple and

fast in practice [Ferragina et al., 2008]. Several wavelet tree-based FM-Indexes have been proposed

over time which improve the time and space complexity of the original structure by storing the rank

structure more efficiently. Mäkinen and Navarro [2005] show how to perform rank over a run length

encoded representation of T bwt by storing extra bitvectors, and achieve overall compression relative

to the k-th order empirical entropy (Hk). Ferragina et al. [2004] show that building wavelet trees over

more compressible chunks of the T bwt – similar to compression boosting [Ferragina et al., 2005] –

achieves compression effectiveness bound by the k-th order empirical entropy (Hk). The same com-

pression effectiveness can be achieved when combining a Huffman-shaped wavelet tree over T bwt

with compressed bitvector representations [Mäkinen and Navarro, 2007]. Recently, Kärkkäinen and

Puglisi [2011b] show via an information theoretic argument that this can also be achieved by parti-
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1 〈sp, ep〉 backward search(P [0..m− 1]) {
2 i = m− 1
3 c = P [i]
4 sp = Q[c], ep = Q[c+ 1]− 1
5 while ( (sp < ep) and (i ≥ 1) )
6 c = P [i− 1]
7 sp = Q[c] + rank(T bwt, c, sp)
8 ep = Q[c] + rank(T bwt, c, ep+ 1)− 1
9 i = i− 1

10 return 〈sp, ep〉
11 }

Figure 2.13: Pseudo code of backward search used in the FM-Index which determines the range
〈sp, ep〉 by performing at most m iterations of LF using a wavelet tree over the BWT of T and a
commutative count array Q to represent F .

tioning T bwt into fixed length blocks. Note that the time complexity of count for wavelet tree-based

FM-Indexes depends on the time complexity of performing rank over the wavelet tree. A regular bi-

nary wavelet tree requiresO(m log σ) time to perform count for a pattern of length m. For example,

Huffman-shaped wavelet tree requires only O(mH0(T )) binary rank operations. Multi-ary wavelet

trees can further be used to reduce the time complexity of an individual rank operation [Ferragina

et al., 2007].

Interestingly, the FM-Index is also considered to be a self-index which implies that the index

contains enough information to recover the original text or any substring T [i..j]. The FM-Index

therefore supports extract(i, j). In addition, the FM-Index also supports locating all positions

of P in T which is equivalent to the locate operation. Ferragina and Manzini [2000] use suffix

array sampling to allow extracting and locating in a FM-Index. Instead of storing SA completely,

we only store every t-th element at a total cost of n/t log n bits in SAL. Consider our example in

Figure 2.12. Assume we want to access SA[5] which is 4 but is not sampled it in SAL. Therefore, we

perform LF (5) which is 7. We still have not stored SAL[7], therefore, we again perform LF (7) = 3.

We now arrived at a row in M for we which we store SAL[3] = 2. As we performed two LF ()

operations we know that SA[5] = 4. Due to the regular sampling of SA, we are guaranteed to

perform at most t LF () operations at a cost of O(t log σ). The same idea can be used to allow

extracting parts of T from the index. However, the sampling has to occur in text order. That is,

instead of sampling SA[0], SA[3], SA[6] and so on, we sample the positions in SA that store SA[xi] =

0, SA[xj ] = 3, SA[xj ] = 6, etc. Ferragina and Manzini [2000] use a sample interval of t = log1+ε n
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for any ε > 0 at a total cost ofO(n/ logε n) extra space. In addition, a bitvector supporting rank and

select is stored to mark each sampled row inM to determine an occurrence of a sampled position

when performing LF (). This can be done efficiently using the techniques described in Section 2.2.

All occurrences of P can be retrieved in O(occ log1+ε n) LF () steps.

Compressed Suffix Array of Sadakane

Sadakane [2002; 2003] proposed a version of the Compressed Suffix Array (CSA) which is an exten-

sion of work by Grossi and Vitter [2000]. The key component of the compressed suffix array is the

inverse function of LF () used by FM-Index type indexes called ψ() (PSI). The function is defined as

follows:

ψ(i) = j such that SA[j] = (SA[i] mod n) + 1.

The original compressed suffix array of Sadakane [2003] stores the array ψ[] in compressed form.

The ψ array contains runs of numbers similar to those present in inverted indexes which can be com-

pressed efficiently [Witten et al., 1999]. The compressed suffix array of Sadakane [2002] provides

similar search capabilities than the FM-Index. In this thesis we do not use this data structure. We

therefore refer to Sadakane [2002; 2003] for a more detailed description of the data structure.

2.5.3 Compressed Suffix Trees

Similar to the way compressed suffix arrays provide the same functionality of suffix arrays in com-

pressed space, there exist compressed suffix trees (CST) which emulate suffix trees in compressed

space. Compressed suffix trees use compressed suffix arrays (for example the FM-Index), com-

pressed representations of the suffix tree shape, and compressed representations of the lcp array to

perform operations supported by uncompressed suffix trees. There are generally two types of com-

pressed suffix trees proposed in previous work [Ohlebusch et al., 2010]. The first is based on the fully

functional compressed suffix tree proposed by Sadakane [2007b]. This CST uses a compressed suf-

fix array implementation such as the FM-Index or the alternative representation of Sadakane [2002].

The space used by the compressed suffix array depends on the chosen index type. In addition to the

compressed suffix array, the CST uses a total 6n bits to represent the lcp array (2n bits) as well a

balanced parenthesis (BP) representation of the tree structure in 4n bits. A suffix tree of a text of

length n has at most 2n − 1 nodes. A balanced parenthesis representation of a tree of 2n nodes

requires at most 4n bits of space. The BP representation was initially proposed by Jacobsen [1989] to

succinctly represent static unlabeled trees. The space usage and time complexity of the tree was later
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Figure 2.14: Components of a compressed suffix tree of text T =chacarachaca$ with the bal-
anced parenthesis representation (BP), the suffix array (SA) and the longest common prefix array
(lcp). Note the colours of the parenthesis representation corresponding to the nodes in the original
suffix tree (left).

improved by Munro and Raman [1997] and first applied to suffix trees by Munro et al. [2001]. The

balanced parenthesis of a tree is built by performing a pre-order traversal of the tree starting from the

root. When entering a node write ‘(’ or 1 bit. When leaving the node write ‘)’ or a 0 bit. Overall,

for a tree of n nodes, 2n bits are used to represent the sequence of parenthesis. An example of a

balanced parenthesis representation of a suffix tree is shown in Figure 2.14 for our running example

of the text T =chacarachaca$. The BP representation can be used to perform many suffix tree

navigation options in constant time using rank and select over the BP bitvector [Ohlebusch et al.,

2010; Sadakane, 2007b]. For example, finding the parent of a node represented by a given parenthe-

sis at position bp[i] is equivalent to finding the parenthesis pair enclosing position i. This operations

is commonly called enclose(i) and can be performed in constant time [Munro and Raman, 1997].

As seen in Figure 2.14, the lcp representation can be used to represent the depth of a node in the

suffix tree. For example, all nodes with an lcp value of 0 are direct children of the root node, whereas

suffixes with larger lcp values are children of internal nodes in the suffix tree. Interestingly, the com-

plete tree structure is implicitly stored inside the lcp array. The second type of compressed suffix

trees do not store the tree shape explicitly using a balanced parenthesis representation, but implicitly

deduce the shape from the lcp array [Fischer et al., 2009; Ohlebusch et al., 2009]. Tree navigation is

supported by supporting three operations on a compressed representation of the lcp array efficiently:

Range Minimum Queries (RMQ), Next Smaller Value (NSV) and Previous Smaller Value (PSV).

Overall, the implicit storage of the tree shape is more space efficient, but results in operations on
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the compressed suffix tree being slower in practice [Ohlebusch et al., 2010]. Recently, full func-

tioning compressed suffix trees have been proposed unifying both general approaches [Navarro and

Sadakane, 2013].

2.5.4 Alternative Text Indexes

Next we give a brief overview of other approaches to text indexing which are not based on the suffix

array or suffix tree. We discuss grammar and Lempel-Ziv compression based indexes and then give a

brief introduction to inverted indexes, which are extensively used in practice.

Grammar Compressed and LZ Text Indexes

The main focus of Stringology research and practical applications of succinct text indexes are com-

pressed suffix-based text indexes. However, there exist several approaches of non-suffix-based self-

indexes. Kreft and Navarro [2012] propose an LZ77 like encoding called LZ-End. They propose a

self-index-based on this encoding which works well for inputs with long repetitions. The approach

is an extension of a LZ77-based text-index proposed by [Kärkkäinen and Ukkonen, 1996] which still

requires the original text in plain form.

Claude and Navarro [2012b] show how to perform search on a special grammar compressed

index. Gagie et al. [2012a] propose a self-index-based on context-free grammars. Maruyama et al.

[2013] propose a different grammar compressed-based self index based on edit-sensitive parsing

which is competitive to FM-based indexes in practice.

Inverted Indexes

One of the most widely used text index data structures is the inverted index [Witten et al., 1999;

Zobel and Moffat, 2006]. Unlike the full-text indexes discussed above, traditional inverted indexes

are token and document based. The index can only be used to search for tokens chosen during index

time. Further, occurrences of a pattern are generally indexed on a document level. That is, for a

given term ti, which documents contain ti. An inverted index consists of three main components as

shown in Figure 2.15. The vocabulary stores the indexed terms, and for each term, term statistics

and a pointer to the postings list for that term. The postings lists store, for a given token ti, the

documents containing the token. Often additional information such as the number of times ti occurs

in document Di is stored. This is called the term document frequency fd,t. To allow reporting of

the exact occurrence positions within a document Di, position offsets posDi can be stored within

a postings list. Finally, the inverted index contains a document store which contains the source
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c) Document Storeb) Postings Listsa) Vocabulary

Figure 2.15: Components of an inverted index with the vocabulary a), the postings lists b) and the
document store c).

document and maps it given document Di, allowing access during query time. Trade-offs exist for

all parts of the inverted index. Here we briefly give an overview for the different parts of the inverted

index.

Vocabulary The vocabulary can be stored as a hash table, as a trie, a B-tree or as a suffix tree.

Compressed suffix trees or suffix arrays can also be used to represent the vocabulary. To compress

the vocabulary, Front Coding can be used to take advantage of long lcp values of entries in the

vocabulary [Witten et al., 1999]. Brisaboa et al. [2011] propose several other compressed string

dictionaries which can also be used to represent the vocabulary of an inverted index. Their best

dictionary is based on a combination of Front Coding and Hu-Tucker-Codes [Hu and Tucker, 1971].

Generally, the vocabulary only contributes a small amount to the total size of the index, but has

to be accessed for every query operation. Therefore, faster query times are more important than

compressibility.

Postings lists Postings lists comprise the main part of the inverted index. For most inverted index

types, postings lists consist of sequences of monotonically increasing document numbers which can

be compressed effectively. Similar to the runs in ψ[i] in the compressed suffix array, individual

postings lists can be compressed very effectively using difference encoding (often called d-gaps in

this context) and Elias δ-codes [Zobel and Moffat, 2006]. However, in practice a byte-wise encoding
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such as v-byte encoding proposed by Scholer et al. [2002] or word aligned codes of Anh and Moffat

[2005] are used instead at a small loss of compression effectiveness while, improving processing

speed of individual postings lists significantly.

Postings lists processing Processing of postings list during query time has also been an active area

of research. Most queries processed by inverted indexes are ranked top-φ document retrieval queries.

Given a query, return the top φ most relevant documents based on a similarity function S. Answering

these queries efficiently has been key to making inverted indexes very fast in practice. The key

concept in efficient evaluation of postings lists is the improvement of efficiency of the inverted index

while not affecting the effectiveness of the results returned by the query evaluation system.

To efficiently answer ranked queries, partially processing postings lists while retaining retrieval

effectiveness has been an active area of research. Two competing approaches are used in practice.

These approaches can be classified as Term-At-A-Time processing (TAAT) or Document-At-A-Time

(DAAT) processing [Turtle and Flood, 1995]. TAAT processing evaluates each postings list, corre-

sponding to a single token ti, at a time, whereas DAAT processing evaluates the postings lists of all

tokens in the query at the same time.

Boolean conjunctive queries, or intersection, is another important query in IR which can be an-

swered efficiently using inverted indexes. Boolean conjunctive queries can be seen as a form of

set intersection, where each postings list is seen as a set of document identifiers. Set intersection,

especially on compressed postings lists has been extensively studied in theory as well as in prac-

tice [Barbay and Kenyon, 2008; Culpepper and Moffat, 2010; Barbay et al., 2009].

Document store For most queries processed by an inverted index, accessing the plain-text docu-

ments is not necessary. However, post-processing the results to contain short summaries or snippets

of the return documents is a common feature of many IR systems based on inverted indexes [Turpin

et al., 2007]. Hoobin et al. [2011] classifies the methods to compress and access the document store

into two categories: Semi-static methods and adaptive methods. Semi-static Methods make two

passes of the collection. The first pass gathers statistics over the collection which are then used to

compress the collection and create the document store. Hoobin et al. [2011] propose a compression

scheme called (RLZ) or relative LZ compression which is based on LZ77. The proposed compression

scheme allows fast random and sequential access to documents while compressing a large collection

(426 GB) to roughly 10% of their original size.
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2.6 Document Retrieval

Previously we only focused on the exact pattern matching problem, that is, locating or counting all

occurrences of a pattern P in a text T . Here we discuss a set of related problems. Instead of a mono-

lithic text collection, the text T , represents a document collection D, consisting of d concatenated

documents {D1, D1, Dd}.

2.6.1 Document Listing Problem

Performing search on a collection of documents instead of a single string has been the dominant

search paradigm in the field of IR for many decades. However, from a theory perspective, Muthukr-

ishnan [2002] formally introduced the document listing problem as:

Definition 4 A document listing search takes a pattern P of length m and a text T of length n par-

titioned into d documents {D1, D2, . . . , Dd} and returns all documents (docc) containing P exactly

once.

The document listing problem is related to the occurrence listing problem discussed in Sec-

tion 2.6.1, where one returns all occurrences (occ) of a pattern P in T . As discussed in Section 2.5.1,

using a suffix tree, the occurrence listing problem can be solved optimally using O(n) preprocessing

time and O(m+ occ) query time.

Range Minimum Queries (RMQ) can be used to return all distinct documents containing P in

O(m + docc) time [Muthukrishnan, 2002]. The algorithm works as follows. First, define an array

DA, usually referred to as the Document Array, which maps each suffix position to its corresponding

document:

DA[i] = Dj if SA[i] ∈ Dj .

at a total cost of n log d bits. Using DA, we can map each suffix to its corresponding document in

O(1) time. Next, Muthukrishnan [2002] defines a second array G as

G[i] = j if j < i, DA[i] = DA[j] = Dk.

where j is the next smaller suffix in SA within the same document Dk. If there is no j, such that the

suffix SA[i] is the smallest suffix in a given document, we set G[i] = −1. G therefore links all suffix

positions within a document together as DA[G[i]] = DA[i] and SA[G[i]] < SA[i].
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# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SA 20 19 6 16 12 14 2 3 5 9 10 18 1 4 17 15 13 7 8 0 11

D 4 4 1 3 2 3 0 0 0 1 2 3 0 0 3 3 2 1 1 0 2

G -1 0 -1 -1 -1 3 -1 6 7 2 4 5 8 12 11 14 10 9 17 13 16

〈sp, ep〉 = 〈8, 14〉

Figure 2.16: Document listing approach of Muthukrishnan [2002] with DA array and G array used
to uniquely list each document in 〈sp, ep〉.

Figure 2.16 shows an example of the two arrays DA and G. Note that every G[i] “links” to po-

sition i to the next smaller suffix SA[j] (to the left) where DA[i] = DA[j]. For example, G[14] = 11

as DA[14] = 3 and the next occurrence of 3 in DA is at position G[11] = 3. Given a range 〈sp, ep〉
in SA corresponding to all occurrences of P in T the algorithm returns all distinct documents match-

ing P as follows. First we perform j = RMQ(G[sp, ep]) to find the position of the smallest el-

ement in G[sp, ep] in constant time. We now check if G[j] < sp. If this is the case we output

DA[j] as DA[j] is the leftmost occurrence of that document in DA[sp, ep]. Next we recurse and per-

form RMQ(G[sp, j − 1]) and RMQ(G[j + 1, ep]). Again we only output if the value is smaller

than sp. This guarantees that we output each document exactly once. The recursion stops once

the RMQ(G[x, y]) query returns a G[j] larger than sp, which implies that there are no candidates

within G[x, y] which have to be processed. Overall we perform O(docc) RMQ queries which can

be performed in constant time each. Therefore, the overall time to list all documents containing P

is O(m + docc). In our example shown in Figure 2.16, we first perform RMQ(G[8, 14]) = 9 as

G[9] = 2 is the smallest element in G[8, 14]. We therefore output DA[9] = 1. Next we recurse

and perform RMQ(G[8, 8]) = 8 and RMQ(G[10, 14]) = 10. We output both DA[10] = 2 and

DA[8] = 0 as both G[10] = 4 and G[8] = 7 are smaller than sp = 8. We continue to recurse using

RMQ(G[11, 14]) and output DA[11] which stops the recursion as RMQ(G[12, 14]) = 8, which is

not smaller than sp. The space usage of the solution in addition to the suffix array or suffix tree is

n log d bits for storing DA as well as n log n bits forG plus 2n+o(n) bits to support RMQ in constant

time [Fischer, 2010]. Overall the space usage is O(n log n) bits.

Välimäki and Mäkinen [2007] reduce the space requirements of the solution proposed by Muthukr-

ishnan [2002]. First, instead of using a suffix tree or suffix array, a compressed suffix array such as the

FM-Index discussed in Section 2.5.2 is used. Additionally, it is possible to calculate G[i] on-the-fly
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using a wavelet tree over DA, as:

G[i] = select(DA, DA[i], rank(DA, DA[i], i)− 1).

That is, the position of the lexicographically next smaller suffix within the same document can

be calculated on-the-fly in O(log d) time. RMQ queries over G can be answered without accessing

G using 2n + o(n) bits [Fischer, 2010]. Therefore, the space cost of solving the document listing

problem is reduced to the cost of storing the compressed suffix array, the wavelet tree over DA plus

2n+ o(n) bits to perform RMQ queries over G.

Sadakane [2007a] uses a similar approach as Välimäki and Mäkinen [2007], but instead of storing

DA explicitly uses a bitvector BD to mark the document boundaries within T . DA[i] can then be

calculated using DA[i] = rank(BD, SA[i], 1). Note that this operation is not constant as SA[i] has to

be calculated from the compressed suffix array as shown in Section 2.5.2. Additionally, Sadakane

stores a compressed suffix array of each document, csaDi , to calculate the frequency with which the

pattern occurs in document Di. The total cost of storing all csaDi is bound above by the cost of

storing the compressed suffix array of all concatenated documents [Hon et al., 2009]. To calculate

the frequency, Sadakane stores an additional RMQ structure to determine the leftmost and rightmost

occurrence of document Di in D[sp, ep] in constant time. These are then mapped, in constant time to

the corresponding positions in csaDi to calculate the frequency by determining the relative position

of the leftmost and rightmost match of P in csaDi .

Range Quantile Queries (RQQ) discussed in detail in Section 2.3.3 can be used to solve the

document listing problem in O(m + doc log σ) time using a wavelet tree over DA [Gagie et al.,

2009]. The method additionally allows retrieving the frequency of P in each document Di at no

extra cost.

Muthukrishnan [2002] formally introduces two related problems of independent interest: First

the Document Mining Problem where, for a given P , all documents containing P at least k times are

to be returned. Second, the repeats problem, where all documents di are to be found where P occurs

at least twice, where the two occurrences are separated by at most k symbols.

2.6.2 Top-φ Document Listing Problem

The top-φ document listing problem is related to the document listing problem discussed above.

Formally it is defined as:

Definition 5 A top-φ document search takes a pattern P , an integer 0 <φ≤ d, and a text T of
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20 19 6 16 12 14 2 3 5 9 10 18 1 4 17 15 13 7 8 0 11

g=2
g=4
g=8

SA

di; fi db; fb dk; fk dl; fl

di; fi db; fb

Figure 2.17: Top-φ retrieval structure of Hon et al. [2009] with multiple skeleton suffix trees marked
at intervals g = 2, 4, 8 with FLists attached to each marked node.

length n partitioned into d documents {D1, D2, . . . , Dd} and returns the top-φ documents ordered

by the number of times P occurs in each document Di.

Essentially, instead of exhaustively returning all documents matching P , we only return the φ

documents where P occurs most frequently. In the following we discuss two main approaches used in

the literature. First, we discuss the skeleton suffix tree-based approach of Hon et al. [2009] commonly

referred to as HSV after the authors. Next we review an alternative, practical approach based on

wavelet trees proposed by Culpepper et al. [2010]. Last we give an overview of recent enhancements

to both approaches as well as alternative approaches.

Skeleton Suffix Tree of Hon et al. [2009]

Hon et al. [2009] were the first to consider the top-φ retrieval problem. They provide a linear space

data structure to solve the problem in optimal time. The main idea is as follows. For a given P and

the corresponding range 〈sp, ep〉 in SA obtained via a CSA, ensure that at most 2g positions have to

processed by pre-computing the “answers” for certain parts of the suffix array. Here g = φ log2+ε n.

The structure is built as follows. First create a suffix tree over T . Next mark the leaves of the

suffix tree, or the corresponding positions in the suffix array, at fixed intervals g = φ log2+ε n for

φ = 2. Next, mark the lowest common ancestors (LCA) of all marked nodes. This corresponds to all
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blue nodes marked in the example shown in Figure 2.17. We refer to the marked nodes as the skeleton

suffix tree τ2. We perform the same marking for φ = 4 and φ = 8 which is shown in Figure 2.17 as

red and green nodes respectively. We refer to these trees as τ4 and τ8. In theory we create skeleton

suffix trees for φ = 2, 4, 8, 16...φmax, where at most log n trees are stored in total. Overall, in each

skeleton tree we mark at most 2n/g nodes. At each marked v node we store the top-φ most frequent

documents in the range SA[l, r] where l and r are the leftmost and rightmost leaf descending from v.

Therefore for the tree τ2 we store the top-2 most frequent documents at each node. For each skeleton

tree we mark at most 2n/(φ log2+ε n) nodes. At each node we storeO(φ) items. Therefore, each tree

τk requires 2n/(log2+ε n) words or 2n/(log1+ε n) bits of space. We store at most log n trees which

results in 2n/(logε n) bits total space usage for all skeleton trees and pre-calculated top-φ values. In

addition to the structure described above we store a compressed suffix array over T at a cost of the

size of the compressed suffix array as discussed in Section 2.5.2. Similar to the approach of Sadakane

[2007a] discussed above, we additionally store a compressed suffix array for each documentDi. This

is used during query processing in case the pre-computed values are not sufficient to answer a given

query.

Queries are answered as follows. First, for a given query, P and φq, we determine the cor-

rect skeleton tree τφ by rounding φq up to the nearest power of two. Next we determine the range

SA[sp, ep] corresponding to P using the CSA. Using 〈sp, ep〉 we start traversing τφ. Each node in

τφ corresponds to a range in SA[i, j] covered by the leaf nodes in the corresponding suffix tree. We

traverse the tree to find the first node v, starting from the root, whose range 〈vl, vr〉 contains 〈sp, ep〉.
Hon et al. [2009] show that sp− lv plus rv − ep can not be larger than 2g, which bounds the number

of items to be processed during query time. Note however that g depends on φ, the number of items

pre-stored in τφ. For large φ, potentially large sections of SA, specifically SA[lv, sp] and SA[ep, rv],

have to be processed.

Wavelet Tree Approach of Culpepper et al. [2010]

A more pragmatic approach was proposed by Culpepper et al. [2010]. They create a balanced wavelet

tree over the document array used by Muthukrishnan [2002] and Välimäki and Mäkinen [2007].

Two new algorithms to traverse a wavelet tree and retrieve the top-φ most frequent documents are

presented: greedy and quantile probing. The algorithms are discussed in detail in Section 2.3.3. In

practice the greedy wavelet tree approach outperforms other top-φ document approaches and can

answer phrase queries faster than inverted index based approaches.
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Alternatives

Several improvements to the three main approaches have been proposed over time. Grammar com-

pression can be used to reduce the size of the wavelet tree over the DA array at the cost of reduced

query performance [Navarro et al., 2011]. Monotone minimum perfect hash functions [Belazzougui

et al., 2009] can be used to reduce the space requirements of the document array in combination with

the skeleton suffix tree [Hon et al., 2009; Belazzougui and Navarro, 2011]. Navarro and Nekrich

[2012] transform the top-φ problem into performing range queries on a grid and show how to solve

the problem in optimal O(m+ φ) time.

2.6.3 Top-φ Ranked Document Listing Problem

In traditional IR systems, retrieving the top-φ documents for a given a pattern in frequency order is

often not sufficient to answer the information need of a user. Instead, IR systems solve the ranked

retrieval problem defined as

Definition 6 Given a query q consisting of one or more query terms qi, a non negative integer φ and

a text T partitioned into d documents {D1, D2, . . . , Dd}, and returns the top-φ documents ordered

by a similarity measure S(q,Di).

A similarity measure S is used to compute the relevance of a document Di to the query q. A query

can consist of multiple query terms which are often treated as an unordered set or a “bag-of-words”

query [Croft et al., 2009; Baeza-Yates and Ribeiro-Neto, 2011]. Many different similarity measures

have been proposed over time. One of the most important similarity measures is BM25. Formally it

can be defined as:

BM25 =
∑
qi∈q

log

(
d− fqi + 0.5

fqi + 0.5

)
· TFBM25

TFBM25 =
fqi,j · (k1 + 1)

fqi,j + k1 · ((1− b) + (b · `j/`avg))

Here, d is the number of documents in the collection, fqi is the number of distinct document

appearances of qi, fqi,j is the number of occurrences of term qi in document Dj , k1 = 1.2, b =

0.75, `j is the number of symbols in the j-th document, and `avg is the average document length

of `j over the whole collection. The free parameters k1 and b can be tuned for specific collections

to improve effectiveness, but we use the standard Okapi parameters suggested by Robertson et al.
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[1994b]. Specifically we use a simplified version of the original formula which sets the additional

parameter k3 to zero [Zobel and Moffat, 2006].

In the bag-of-words retrieval model, each document is seen as an unordered set of terms (a bag).

Thus each query term can be evaluated independently as a disjunctive boolean query over all terms.

In case of BM25, the similarity of a document to the query q is calculated by accumulating the term

frequency scores (TF) normalized by the inverse document frequency (the logarithmic term in the

summation above) for each document for each query term. The efficiency of an index solving the

top-φ ranked document search problem thus depends on the ability to compute the similarity measure

for a document efficiently.

Inverted indexes have been heavily optimized to efficiently support retrieving the top-φ most

“important” documents based on a given similarity measure. The main optimization technique used

is early termination. Once the number of processed inverted lists can no longer significantly affect

the outcome of the top-φ computation, the result is returned. Several approaches have been proposed

to minimize the number of lists/elements to be processed. Early termination techniques exist for both

TAAT and DAAT processing.

Term-at-a-Time Processing (TAAT)

For TAAT processing, a fixed number of accumulators are allocated, and the rank contribution – the

contribution of a query term to the overall similarity of a document to q – is incrementally calcu-

lated for each query term, one term-at-a-time, in increasing document order. When inverted files are

stored on disk, the advantages of this method are clear. The inverted file for each term can be read

into memory, and processed sequentially. However, when φ is small relative to the total number of

matching documents in collection, TAAT can be inefficient, particularly when the number of terms

in the query increases, since all of the inverted lists must be processed before knowing the full rank

score of each document. In early work, Buckley and Lewit [1985] proposed using a heap of size φ

to allow posting lists to be evaluated in TAAT order. Processing is terminated when the sum of the

contributions of the remaining lists cannot displace the minimum score in the heap.

Moffat and Zobel [1996] improved on this pruning approach with two heuristics: STOP and

CONTINUE. The STOP strategy is somewhat similar to the method of Buckley and Lewit [1985],

but the terms are processed in order of document frequency from least frequent to most frequent.

When the threshold of φ accumulators is reached, processing stops. In contrast, the CONTINUE

method allows the current accumulators to be updated, but new accumulators cannot be added. These

accumulator pruning strategies only approximate the true top-φ result list.
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The true-φ result list refers to the ranking of documents after all postings list of all query terms

have been completely evaluated, or the computed result list is guaranteed to be equal to that of

the complete evaluation. Methods which cannot fulfil this requirement are considered approximate.

Approximate results are generally acceptable as long as the effectiveness (that is, the quality of the

result list) of the approach is not statistically significantly different from the true-φ result list.

If approximate results are acceptable, the TAAT approach can be made even more efficient using

score-at-a-time or impact ordering [Anh and Moffat, 2006]. The key idea of impact ordering is to

precompute the TF for each document a term appears in. Next, the TF values are quantized into

a variable number of buckets, and the buckets (or blocks) are sorted for each term in decreasing

impact order. Now, the top-φ representative can be generated by sequentially processing each of

the highest ranking term contribution blocks until a termination threshold is reached. The authors

refer to this blockwise processing method as score-at-a-time processing. Despite not using the full

TF contribution for each term, Anh and Moffat [2006] demonstrate that the effectiveness of impact

ordered indexes is not significantly reduced, while efficiency is dramatically improved.

Turtle and Flood propose a simple pruning strategy for both TAAT and DAAT processing called

MAXSCORE. Using MAXSCORE, the processing of a postings-list stops if the sum of remaining the

postings list can not change the current top-φ result list.

Document-at-a-Time Processing (DAAT)

The alternative approach is to process all of the terms simultaneously, one document at a time [Büttcher

et al., 2010]. The advantage of this approach is that the final rank score is known as each document is

processed, so it is relatively easy to maintain a heap containing exactly φ scores. The disadvantage is

that all of the term posting lists are cycled through for each iteration of the algorithm requiring non-

sequential disk reads or memory accesses for multi-word queries. However, for in-memory ranked

retrieval, DAAT tends to work very well in practice.

Fontoura et al. [2011] compare several TAAT and DAAT based in-memory inverted indexing strate-

gies. The authors present novel adaptations of MAXSCORE and WAND [Broder et al., 2003] to sig-

nificantly improve query efficiency of in-memory inverted indexes. WAND uses a two-level approach

to only evaluate promising postings lists completely.

The authors go on to show further efficiency gains in DAAT style processing by splitting query

terms into two groups: rare terms and common terms. The exact split is based on a fixed threshold

selected at query time.

The quality of the returned result list is often evaluated using human accessors with one of many
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effectiveness measures such as precision or recall. In general, the similarity between the retrieved

result list and a “gold standard” list generated by human accessors is compared to judge the quality of

the results. In the IR field, statistical analysis is used to determine if the lists are significantly different

at a given confidence interval using paired t-tests or other metrics.

Alternative Index-based Approaches

From a theory perspective, Hon et al. [2009] propose a suffix tree based index storing document

identifiers based on importance in each node of the suffix tree. Overall the index uses linear space

and achieves O(m+ φ log φ) query time. Navarro and Nekrich [2012] show a top-φ approach using

range queries on a point grid can also be used to retrieve documents based on importance in optimal

O(m+ φ) time. However, these approaches only handle singleton term queries and are not designed

to answer “bag-of-words” queries.

2.7 Experimental Setup

We now describe the experimental setup we will use for all our experiments. First we describe the

hardware used for the experiments. Next we describe the data sets, methodology and tools used in

this thesis.

2.7.1 Hardware

Our main experimental machine was a server equipped with 2× Intel Xeon E5640 processors each

with a 12 MB L3 cache. The total memory is 144 GB of DDR3 DRAM, 72 GB directly attached to

each socket. This implies that the machine is operating on a Non-Uniform Memory Access (NUMA)

architecture, where access time to RAM depends on the location of the position to be accessed. Each

processor uses a 32 kB L1 data cache and a 256 kB L2 cache per core. The L1 cache line size is 64

bytes. The processor additionally supports memory page sizes of 4 kB, 2 MB and 1 GB. During the

experiments we only used one thread of a core. Each CPU further includes a two-level translation

lookaside buffer (TLB) with 64 4 kB-page entries in the first level and 512 in the second level. The

TLB has 4 dedicated entries for 1 GB-pages in its first level. We refer to this machine as LARGE.

For certain cache/TLB sensitive experiments we use a second machine to sanity check our results

on small test instances. A desktop machine equipped with a Intel Core i5-3470 Processor with 6 MB

L3 cache, 16 GB of DDR3 DRAM. The processor uses 32 kB L1 data cache and 256 kB L2 cache

per core. We refer to this machine as DESKTOP.
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2.7.2 Software

Ubuntu Linux version 12.04 served as the operating system on LARGE and version 12.10 on DESK-

TOP. We used the g++ compiler version 4.6.3 on LARGE and version 4.7.2 on DESKTOP and used

the basic compile options -O3 -DNDEBUG -funroll-loop.

Most of the implementations are included in the open source C++ template library SDSL which is

available at http://github.com/simongog/sdsl [Gog, 2011]. Our fork of the library with

additional baselines is available at http://github.com/mpetri/sdsl. The library includes

a test framework which was used to check the correctness of the implementations. The library also

provides methods to measure the space usage of data structures and a provides support for timings

based on the getrusage and getTimeOfDay functions. We state the real elapsed time in all

results.

The papi library version 4.4.0, which is capable of reading performance counters of CPUs,

was used to measure cache and TLB misses. It is available under http://icl.cs.utk.edu/

papi/. Note that we choose to not use cachegrind, a popular cache measurement tool provided in

the valgrind debugging and profiling tool suite. Cachegrind performs simulations to determine the

number of cache misses caused by a program. However, this simulation does not elucidate cache

misses and TLB misses caused during address translation, which can affect the performance of data

structure on large data sets. As the size of the page table grows with the size of the data, cache

misses and TLB misses resulting from accesses to the page table become more frequent and thus

more relevant to the overall performance of a data structure.

2.7.3 Data Sets

Over the course of our experiments we use the following data sets:

• The Pizza&Chili Corpus: Ferragina et al. [2008] perform an extensive evaluation of com-

pressed text indexes by providing multiple baseline implementations and a widely used test

corpus available at http://pizzachili.dcc.uchile.cl/texts.html. The cor-

pus consists of files up to 1 GB in size from different domains such as Bioinformatics to source

code and English text, and has been used by many researches as a reference collection in ex-

periments [Claude and Navarro, 2008; Navarro and Providel, 2012]. However, the 200 MB test

instances are the largest files which are available for all categories on the website. From the

Pizza&Chili Corpus we use the 200 MB test instances of SOURCES (source code), XML(taken

from DBLP), ENGLISH (English text from the Wall Street Journal), DNA (P&C) and PRO-
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TEINS (protein sequences). A detailed description of each data set is available on the corpus

website.

• To go beyond the 200 MB limit, we created a 64 GB file from the 2009 CLUEWEB web crawl

available at http://lemurproject.org/clueweb09.php/. The first 64 files in the

directory ClueWeb09/disk1/ClueWeb09_English_1/enwp00/ were concatenated

and null bytes in the text were replaced by 0xFF-bytes. We refer to this data set as WEB.

Prefixes of size X are denoted by WEB-X .

• Our second larger text is a 3.6 GB genomic sequence file called DNA. We again refer to prefixes

of size X as DNA-X . It was created by concatenating the “Soft-masked” assembly sequence

of the human genome (hg19/GRCH37) and the December 2008 assembly of the cat genome

(catChrV17e) in FASTA format. We removed all comment/section separators and replaced them

with a separator token to fix the alphabet size.

From all data sets we created bitvectors denoted by the WT-X extension. Each bitvector was

produced by taking a prefix of size X of a given file, calculating the Huffman-shaped wavelet tree

WT of the Burrows-Wheeler-Transform of this prefix and concatenating all the bitvectors of WT .

For example, WEB-WT-1 GB refers to the 1 GB prefix of the wavelet tree of the BWT of WEB.

For various experiments on bitvectors we further create synthetic data sets as in previous studies

on rank and select [González et al., 2005; Vigna, 2008]. We created bitvectors of varying sizes and

densities to evaluate our data structures. The instance sizes range from 1 MB to 64 GB, quadrupling

in size each time. For a given density d, the random bitvectors are generated as follows: first, we set

the seed of the random number generator to 4711 (srand(4711)) to enable reproducibility. We

then set B[i] to one with probability d.

2.8 Summary and Conclusion

In this chapter we provided background to text indexing, succinct data structures, succinct text in-

dexes and document retrieval. First we focused on two basic operations rank and select which form

the basis of most succinct data structures. We gave an overview of previous work on implementing

both operations over computer words, bitvectors and general sequences. For rank on computer words

we described a classic population count method [Knuth, 2011], and the initial proposal of Jacobsen

[1989] to solve rank efficiently on uncompressed bitvectors, and the constant time select data struc-

ture of Clark [1996]. For both data structures we discussed practical alternatives and empirical evalu-

ations, such as the study of González et al. [2005] which enable additional trade-offs for supporting
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both operations over uncompressed bitvectors. Complementary to uncompressed bitvectors we de-

scribed a compressed bitvector representation which also support rank and select efficiently [Raman

et al., 2002].

Using either compressed or uncompressed bitvectors, a wavelet tree can support rank and select

over general sequences by decomposing the operations of a non-binary alphabet to rank and select

operations on bitvectors [Grossi et al., 2003]. We described the basic concept of wavelet trees and

alternative representations. In practice the wavelet tree provides the good performance, a wide variety

of time-space trade-offs and additional operations [Mäkinen and Navarro, 2005; Gagie et al., 2012c].

Wavelet trees are one of the key components to implement succinct text indexes [Ferragina et al.,

2008].

The main type of succinct text index we focus on in this thesis is the FM-Index [Ferragina and

Manzini, 2000]. We discussed how the BWT [Burrows and Wheeler, 1994] is used in the FM-Index

to emulate the suffix array by performing backward search using a wavelet tree. Additionally, we

described in detail the three main operations count , extract and locate supported by the FM-Index.

We further discussed alternative index types including inverted indexes which are used in practice

to solve the top-φ ranked document search problem [Zobel and Moffat, 2006]. Lastly we provided

an overview of different document retrieval techniques. We discussed data structures solving the

document listing problem [Muthukrishnan, 2002; Välimäki and Mäkinen, 2007] and the top-φ most

frequent document search problem [Culpepper et al., 2010]. From a practical perspective we dis-

cussed inverted index query processing techniques used to solve the top-φ ranked document search

problem efficiently [Turtle and Flood, 1995].

In the next chapter, we focus on engineering practical rank and select data structures on both

uncompressed and compressed bitvectors. We also discuss improvements to wavelet tree processing

in the context of succinct text indexes as well as improvements to the construction cost of different

succinct data structures.
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Optimized Succinct Data Structures

Main memory is often one of the key constraints in processing large amounts of data efficiently. Tra-

ditional data structures such as the binary search tree use several times the space of the underlying

data to provide additional functionality such as search efficiently. For large data sets, there is often

not enough main memory available to retain these classical data structures in-memory completely.

Several solutions to this problem such as using external-memory or distributing the data structure

over machines multiple exist. Succinct data structures can also be used to process large amounts of

data which cannot usually fit into main memory using traditional data structures. They require space

close to the information theoretic lower bound needed to represent the underlying objects, while at

the same time providing the functionality of their classical counterparts. In theory, operations on

succinct data structures can be carried out in almost the same time complexity as in their uncom-

pressed counterparts. Optimizing succinct data structures to efficiently operate on large data sets is

essential as, from a practical point of view, this is the only time they should replace their equivalent

uncompressed data structure.

In addition to memory constraints, which can be mitigated by succinct data structures, processing

power has also become a bottleneck for computationally large tasks. For years, programmers could

rely on advances in CPU manufacturing which increased processor speeds with every generation. Un-

fortunately, this is no longer the case, and the speed of processors has been stagnant for the last five

years [McKenney, 2011]. New processor generations, in recent years, provide better performance

by including multiple processing cores which, unfortunately, do not affect single-threaded program

execution. The instruction set supported by current processors has also become more versatile. Ad-

ditional instruction sets such as SSE 4.2 can perform critical operations more efficiently. However,

these instruction sets often require additional effort by the programmer to be effective [Suciu et al.,
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2011]. Using these techniques is usually referred to as broadword programming, and has already

been successfully applied to the field of succinct data structures [Vigna, 2008].

Another emerging problem is the cost of memory access. Each memory access performed by

a program requires the operating system to translate the virtual address of a memory location to its

physical location in RAM. All address mappings are stored in a process-specific page table in RAM.

Today, all CPUs contain a fast address cache called the Translation Lookaside Buffer (TLB). The

TLB is used to cache address translation results similar to the way the first level (L1) cache is used

to store data from recently accessed memory locations. If the TLB does not contain the requested

address mapping, the in-memory page table has to be queried. This is generally referred to as a TLB

miss which similar to a L1/L2 cache miss affects runtime performance. Accessing main memory

at random locations results in frequent TLB misses as the amount of memory locations cached in

the TLB is limited. Operating systems provide features such as hugepages to improve the runtime

performance of in-memory data structures. Hugepages allow the increase of the default memory page

size of 4 kB to up to 16 GB which can significantly decrease the cost of address translation as a larger

area of memory can be “serviced” by the TLB. Succinct data structures such as FM-Indexes exhibit

random memory access patterns when performing operations such as count , yet to our knowledge,

the effect of hugepages on the performance of succinct data structures has not yet been explored.

Unfortunately, the running time of operations on succinct data structures tends to be slower than

the original data structure they emulate in practice. Succinct data structures should therefore only be

used where memory constraints prohibit the use of traditional data structures [Ferragina et al., 2008].

Twenty years ago, Ian Munro conjectured that we no longer live in a 32-bit world [Munro, 1996]. Yet,

many experimental studies involving succinct data structures are still based on small data sets, which

somewhat ironically contradicts the motivation behind developing and using succinct data structures.

From a theoretical perspective, the cost to access a given word of memory is constant; in reality, the

cost of address translation associated with each memory access becomes more significant as the size

of the in-memory data structure increases. This effect however can not be clearly measured when

performing experiments on small data sets.

In this chapter we focus on improving basic operations (rank and select) on bitvectors used in

many succinct data structures. We specifically focus on the performance on data sets much larger than

in previous studies. We explore cache-friendly layouts, new architecture-dependent parameters, and

previously unexplored operating system features such as hugepages. Specifically, we show that our

improvements to these basic operations translate to substantial performance improvements of FM-

type succinct text indexes. Within this chapter we gradually shift our focus from basic bit operations

on words, to bitvectors, wavelet trees and succinct data structures. Our contributions and the structure
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of this chapter can be summarized as follows:

1. First we explore improvements to basic bit operations on a single computer word used in most

succinct data structures. Throughout the chapter we show how improvements to these opera-

tions affect the operations of larger data structures (Section 3.1).

2. We focus on performing rank and select on uncompressed bitvectors in Sections 3.2 and 3.3.

3. We discuss rank and select in the context of compressed bitvectors in Sections 3.4.

4. We analyse the effects of our optimizations of rank on wavelet trees. We additionally show that

performing rank on a wavelet tree cache efficiently can further increase run time performance

(Section 3.5).

5. We provide an extensive empirical evaluation by building on the experimental studies of Fer-

ragina et al. [2008], Vigna [2008] and González et al. [2005]. We show how the speed-up of

basic bit operations propagates through the different levels of succinct data structures: from

binary rank and select over bitvectors to FM-Indexes. To the best of our knowledge, we are

the first to explore the behaviour of these succinct data structures on massive data sets (64 GB

compared to commonly used 200 MB) (Section 3.6).

3.1 Faster Basic Bit Operations

Answering operations rank(B, i, c) and select(B, i, c) requires computing rank64 (often called popcnt)

and select64 on a 64-bit word. The first step to an efficient implementation of a rank and select data

structure is to improve the performance of the basic operation rank64 and select64 which perform

rank and select on a 64 bit computer word. In this section we compare different rank64 and select64

implementations. Additionally, a new, branchless select64 implementation is proposed which outper-

forms all existing approaches.

3.1.1 Faster Rank Operations on Computer Words

Various popcnt methods have been proposed in previous work. In Section 2.2.1 we discuss several

of these methods in detail. Here we refer to the table-based popcnt approach proposed by González

et al. [2005] as (poptable). The broadword technique discussed by Knuth [2011, p. 143] is referred

to as popbw in the sequel. Recently, researchers have started using advanced CPU instructions (for

example from the SSE instruction set) to perform population count more efficiently [Suciu et al.,
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Time in [ns]

rank64 select64

poptable popbw popblt seltable selbw selblt

LARGE 5.47 3.97 1.00 24.93 14.56 6.69
DESKTOP 2.88 1.96 0.56 16.02 8.44 3.96

Table 3.1: Mean time over 100 million iterations to perform one operation in nanoseconds for differ-
ent rank64 and select64 implementations.

2011]. At the end of 2008 both INTEL and AMD released processors with built-in CPU instructions

to solve popcnt efficiently (down to 1 CPU cycle; see e.g. Fog [2012]) on 64-bit words. This method

is referred to as popblt for built-in. Performance comparisons of the different methods on our two

experimental machines (described in Section 2.7) are shown in Table 3.1.

Using the fastest methods on a modern computer, a popcnt operation can be performed in sev-

eral nanoseconds. To measure the performance differences of the different methods correctly, 108

operations are performed on random values for each method in this experiment. An array of random

numbers is sequentially processed to avoid generating random numbers on-the-fly. Note that the table

lookup method poptable which was considered the fastest in 2005 is now roughly five times slower

than using the CPU internal popblt instructions. The broadword technique popbw used by Vigna is

roughly 3 times slower than the popblt method. Note that there exist other popcnt algorithms in prac-

tical use and in literature. We focus here on those commonly used in the context of succinct data

structures. We further note that more extensive comparisons also show that popblt is currently the

fastest popcnt algorithm. For a more in-depth comparison of different population count methods we

refer to the extensive empirical study of Suciu et al. [2011].

3.1.2 Faster Select Operations on Computer Words

Unfortunately, the development of efficient select operations on 64-bit integers (select64) has not

been as rapid as for rank64. There are no direct CPU instructions available to return the position of

the i-th set bit. Method poptable solves the problem in two steps: first, the byte which contains the

i-th set bit is determined by performing sequential byte-wise popcounts using a version of poptable.

The final byte is scanned bit-by-bit to retrieve the position of the i-th bit. Vigna [2008] proposed

a broadword computing method. This method is referred to as selbw. Figure 3.1 shows a faster

variant of Vigna’s method (selbw) which uses two small additional lookup tables and a builtin CPU

instruction. Given a 64-bit word x and a number i, the position of the i-th set bit in x is determined
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1 uint32_t select64(uint64_t x, uint32_t i) {
2 uint64_t s = x, b; uint64_t j = i;
3 s = s-((s>>1) & 0x5555555555555555ULL);
4 s = (s & 0x3333333333333333ULL)
5 + ((s >> 2) & 0x3333333333333333ULL);
6 s = (s + (s >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
7 s = s*0x0101010101010101ULL;
8 b = (s+PsOverflow[i]) & 0x8080808080808080ULL;
9 int bytenr = __builtin_ctzll(b) >> 3;

10 s <<= 8;
11 j -= ((uint8_t*)&s)[bytenr];
12 pos = (bytenr << 3) + Select256[((i-1) << 8)
13 + ((x>>(bytenr<<3))&0xFFULL)];
14 return pos;
15 }

Figure 3.1: Fast branchless select64 method using built in CPU instructions and a final table lookup.
Returns the position of the i-th set bit in x with improvements to previous versions highlighted in grey.

as follows. In the first step the byte bi in x which contains the i-th set bit is determined. In the second

step a lookup table is used to select the j-th set bit in bi, which corresponds to the i-th set bit in

word x.

In detail, first the divide and conquer approach described by Knuth is used to calculate the number

of ones in each byte in x (lines 2-6). Line 7 calculates the cumulative sums of the byte counts using

one multiplication. Next these cumulative sums are used to determine bi. This can be done by adding

a mask (PsOverflow[i]) depending on i to the cumulative sums (line 8). After the addition the

most significant bit (MSB) of each byte is set, if its corresponding sum was larger than i (line 8).

The first byte with a sum larger or equal to i contains the i-th bit in x. A second mask is used to

set the remaining 7 bits in each byte to zero. Now the position of bi corresponds to the number of

trailing zeros divided by eight (line 9− 10). A CPU instruction (builtin ctzll) is used to select

the leftmost non-overflowed byte bi. In the second step, the rank j of the i-th bit in bi is determined

by subtracting the number of set bits in x occurring before bx (line 11). Last, a final lookup table

(Select256) is used to select the j-th bit in bi and return the position (pos) of j in the word x.

Next, the new method (selblt) is compared to the sequential table lookup (seltable) based method

used by González et al. [2005] and to the broadword method (selbw) proposed by Vigna [2008] which

to our knowledge is the currently fastest method available. A performance comparison of different
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select64 methods on our two test machines is shown in Table 3.1. Again, 100 million operations

are performed over pre-computed select queries. The new approach (selblt) is only roughly 6 times

slower than the fastest rank64 method. Using incremental table lookups (seltable) to determine the

correct byte within the 64-bit integer and using bit-wise processing of the target byte is roughly 3

times slower than the fastest method. The broadword method (selbw) proposed by Vigna [2008]1 is

roughly 2 times slower. This relative behaviour between the different methods is similar on both test

machines, while all operations on the newer machine, DESKTOP, run roughly twice as fast as LARGE.

Overall, careful engineering can significantly improve the performance of rank and select on 64

bit words. Throughout this chapter the effect of these improvements is evaluated on more complex

succinct data structures.

3.2 Optimizing Rank on Uncompressed Bitvectors

Most succinct data structures do not directly perform rank on computer words. Instead the abstrac-

tion of a bitvector is used. In this section we explore optimizing performing rank on an uncompressed

bitvector B (rank(B, i, 1)). We first propose a new cache- and TLB-friendly bitvector representa-

tion in Section 3.2.1. Second we evaluate our structure in Section 3.2.2. We investigate different

time-space trade-offs for our new structure over bitvectors of size 1 GB. In addition, we investigate

the scalability of our data structure compared to other uncompressed rank solutions. Here we dis-

cuss the effects of efficient rank64 implementations, operating system features such as hugepages

and bitvector size on the performance of the rank structure. We specifically analyse the TLB and

cache performance of all structures to elucidate the impact of the different features on the overall

performance of the data structure.

3.2.1 A Cache-aware Rank Data Structure on Uncompressed Bitvectors

In practice, rank(B, i, 1) is answered as described in Section 2.2.2 using a two-level structure pro-

posed by Jacobsen [1988]. As several authors already pointed out, in addition to fast basic bit-

operations, minimizing cache and TLB misses is the key to fast succinct data structures [Vigna,

2008; González et al., 2005]. Using two block levels results in 3 cache misses to answer a rank

query: one access to Rs and Rb each and a third access to the bitvector to perform popcnt within

the target block. To reduce cache and TLB misses, Vigna proposed to interleave Rs and Rb [Vigna,

2008]. Each superblock Rs[i] which contains absolute rank samples is followed in-memory by the

corresponding blocksRb[j..k] containing the relative rank samples. The size of the blocks are chosen

1available at http://sux.dsi.unimi.it/select.php
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B

sb sb sb sbdata data data

RANK(B,i,1)

Figure 3.2: Interleaved bitvector (B) showing superblocks (sb) and data interleaved for optimal
cache performance. A rank operation first jumps to the interleaved superblock and then iteratively
processes the following data block, with block size 4× 64 = 256 bits.

as follows: 64 bits are used to store each superblock value. The second 64 bits are used to store seven

9-bit block counts. Omitting the first block count, as it is always 0, one can answer rank queries in

constant time for a superblock size of s = (7 + 1) · 29 = 512. This reduces the number of cache and

TLB misses to two: one to access the pre-calculated counts and a second to perform the population

counts within the bitvector. The total space overhead of this approach is 128/512 bits = 25%. In the

following, we call the implementation of this approach RANK-V.

Extending Vigna’s approach, we propose to interleave the pre-computed values and the bitvector

data as shown in Figure 3.2. We further only store one level of pre-computed values similar to one of

the methods proposed in [González et al., 2005]. We conjecture that, for large enough bitvectors and

fast popcnt methods, the advantage of only having one cache and TLB miss will outweigh the cost

of performing a longer sequential scan over the block as part of block will already be high up in the

cache hierarchy.

For each block b we therefore only store a 64-bit cumulative rank count. For a block size of 256

bits, the space overhead of our method is 25%, the same as the solution proposed by Vigna. We

call our 25% overhead implementation RANK-IL. More space-efficient versions can be achieved by

choosing a larger block size. For example a block size of 1024 results in 6.25% extra space. The

same space can also be achieved by a variation of Vigna’s approach, which we call RANK-V5. Set

the superblock size to s = 2048 and the block size to b = 6 · 64 = 384 bits. The superblock values

are still stored in a 64-bit word and the 5 positive relative 11-bit counts in a second 64-bit word. A

rank query then requires two memory accesses plus at most 6 popcnt operations.

3.2.2 Evaluating the Performance of the Cache-aware Rank Data Structure

Figure 3.3 shows the time space trade-offs for our new interleaved bitvector (RANK-IL) for different

block sizes for a 1 GB bitvector. The time in nanoseconds for one rank operation averaged over 100
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Figure 3.3: Time-Space trade-offs for our interleaved bitvector representation (RANK-IL) for varying
block sizes (red) over a 1 GB bitvector for different popcnt implementations. Also includes time-
space trade-offs for RANK-V and RANK-V5 for comparison.

million uniformly distributed queries on our small test machine (DESKTOP) is measured. The space

overhead shown is the additional space needed as a percentage of the original bitvector size. For

blocksize b = 64 the space overhead is 100%, as we store a 64-bit superblock for each 64-bit block.

As calculated above, RANK-V uses 25% space overhead whereas RANK-V5 uses 6.25%. The best

time-space trade-offs for RANK-IL are achieved for block sizes 256 to 2048. The effect of different

popcnt implementation is significant (as discussed in Section 3.1) : for the slower poptable and popbw
implementations, the representations proposed by Vigna [2008] outperform our implementation. For

the fast popblt implementation RANK-IL outperforms both RANK-V and RANK-V5 when compared

to block sizes of equal space overhead. In fact, RANK-IL using popblt with space overhead of 3%,

which corresponds to a blocksize of b = 2048, is faster than RANK-IL using poptable and a blocksize

of b = 128 (corresponding to a space overhead of 50%). This observation can be explained by the fact

that RANK-IL uses sequential popcnt scans proportional to the size of the block size. The running

time therefore depends on the block size as well as the underlying popcnt implementation. Both

RANK-V and RANK-V5 also profit from faster popcnt. RANK-V using popblt is roughly 40% faster

whereas RANK-V5 is roughly twice as fast using popblt.
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Scalability of the Cache-aware Rank Data Structure

The performance of our representation can change depending on the size of the input. Here we

evaluate our new representation for different bitvector sizes. As RANK-IL is more cache-efficient than

RANK-V, it is expected that RANK-IL outperforms RANK-V as the size of the bitvector increases.

Figure 3.4 shows the run time performance of RANK-IL and RANK-V for bitvectors of sizes 1 MB up

to 64 GB. Again, 100 million operations on our large test machine (LARGE) are performed and the

mean time per operation in nanoseconds is reported. In this experiment, the two most efficient popcnt

implementations, popbw and popblt, are used to parametrize the previously fastest implementation

RANK-V and our new, fully interleaved representation RANK-IL with it. Additionally, different

memory page sizes are also evaluated. The standard 4 kB pages (no HP) or 1 GB hugepages (HP) are

used, since address translation also determines the performance of the data structure. The results of

our random query experiment is depicted in Figure 3.4. Note that the performance is not affected by

the density of the bitvector, since accessing the cumulative counts and performing popcnt does not

depend on the underlying data. The cost of performing a single access operation on the bitvector is

also included in each subgraph as baseline and as a practical lower bound, since a rank operation can

not be faster than reading a single bit. Figure 3.4 shows that RANK-V is better than RANK-IL for test

instances of larger size if popcnt method popbwis used, and RANK-IL outperforms RANK-V if popblt
is used. It also shows that the runtime of the access and rank operations increases with the size of

the data structure, if the standard 4 kB-pages are used.

Performance of a Single Access Operation. The access operation can be used to explain the

observed runtime performance with increasing input size. Thus we first discuss the cost of accessing

a single bit in a bitvector of increasing size before providing a more detailed explanation for the rank

structures. In our explanation we heavily rely on the cache and memory structure of our large test

machine (LARGE) described in detail in Section 2.7.1. The only cost of an access operation is the

address translation and the memory access to the bitvector. For 4 kB-pages the 512 elements of the

TLB can store translations of up to 512×4 kB = 2 MB of memory. For a 1 MB-bitvector all address

translations can be performed using only the TLB. After a few initial TLB misses for the first random

accesses and no more TLB misses occur. The main cost is therefore the L2 miss, which occurs when

fetching the bitvector data from L3 cache.

For bitvectors in the range from 2 MB to 12 MB, the bitvector still fits in L3 cache, but TLB

misses occur as more memory pages are accessed than TLB entries are available. The handling of a

TLB miss is cheap, since the page table for a 12 MB index is about 12 kB large and fits in L1 cache.
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Figure 3.4: Time for single random rank operations on uncompressed bitvectors. The top row shows
performance with standard 4 kB pages, the bottom row shows performance with 1 GB pages. The left
column shows performance using broadword method proposed by Vigna, right column with SSE.

This is still the case for bitvectors in the range from 12 MB to 32 MB, but the bitvector itself can not

be completely held in the L3 cache (as our L3 cache is 12 MB large) and therefore L3 misses occur

and the bitvector data is transfered form RAM. In the range from 32 MB to 256 MB the page table is

of size 32 kB to 256 kB and does not fit in L1 cache any more. Therefore, each TLB miss now forces

a L1 miss to fetch the page table entry from L2 cache. In the range from 256 MB to 12 GB the page

table is larger than the L2 cache and so each access operation can cause a L2 miss to update the TLB.

Finally, for bitvectors larger than 12 GB, the page table is larger than the L3 cache. Therefore

looking up the address of the page table entry can now itself result in a TLB miss, which in turn
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TLB misses / L1 cache misses per operation

1 MB 16 MB 64 MB 256 MB 1 GB 4 GB 16 GB 64 GB

4 kB pages (no HP)

RANK-V 0.0 /2.0 1.6/3.1 1.9/3.8 1.9/4.0 2.1/4.3 2.8/5.0 3.6/5.7 3.9/6.0
RANK-IL 0.0 /2.0 0.9/2.3 0.9/2.0 1.0/3.0 1.0/3.2 1.2/3.7 1.3/4.0 1.9/4.3

BV access 0.0 /1.0 0.8/1.6 0.9/2.0 1.0/2.0 1.0/2.1 1.4/2.6 1.8/2.9 1.9/3.1

1 GB pages (HP)

RANK-V 0.0 /2.0 0.0/2.1 0.3/2.1 1.4/2.1 1.8/2.1 2.0/2.1 2.0/2.1 2.0/2.1
RANK-IL 0.0 /2.0 0.0/2.0 0.2/2.0 0.9/2.0 1.0/2.0 1.1/2.0 1.1/2.0 1.1/2.0

BV access 0.0 /1.0 0.0/1.1 0.0/0.9 0.7/1.1 0.9/1.1 0.9/1.1 1.0/1.1 1.0/1.1

Table 3.2: Average TLB and Level 1 cache misses for a single rank or access operation on uncom-
pressed bitvectors over 10 million queries for 4 kB and 1 GB pages.

can be handled by one L1 miss to access an entry of the upper level of the hierarchical page table.

Accessing and loading the found page table entry into memory causes then another L3 miss. In total

one access operation can result in 2 TLB and 3 cache misses when 4 kB pages are used. This can be

seen in Table 3.2: for a 64 GB bitvector, the mean number of TLB misses per access query is 1.9,

and the mean number of L1 cache misses is 3.1.

Runtime Performance of RANK-V and RANK-IL. The performance of both rank operations can

now be explained based the discussion of access above. The cost of RANK-V are two memory

accesses plus one popcnt operation. For the 64 GB instance, the TLB and L1 misses are two times

the misses for one access. We can observe in Figure 3.4 that the runtime is also doubled. Using

the slow popcnt adds extra overhead. The new RANK-IL performs only one memory access to the

superblock and sequentially reads, for a block size of 256 bits, at most 32 bytes (equal to four 64 bit

words) additional bytes. These bytes are not necessarily aligned. This therefore results in one extra

L1 cache miss on top of the cost of one access operation.

The use of 1 GB-pages reduces the number of TLB misses. For smaller instance sizes no misses

occur. For large bitvectors, the second TLB miss caused by the access to the large page table is no

longer needed. We observe in Table 3.2 and Figure 3.4 that the transition from not having a TLB

miss to having a TLB miss occurs before the 1 GB size is reached. A reason for this might be that

the operating system also stores the kernel itself in one hugepage, which in turn affects the number

of TLB entries available to other programs. Further, note that the runtime for the 64 GB bitvector
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instance increases slightly. This can be explained by the fact that the whole data structure including

the 25% rank overhead, is 80 GB in size and therefore larger than one NUMA node (recall that our

system provides non-uniform memory access – NUMA – as discussed in Section 2.7.1), which is

72 GB. As the memory access in NUMA architectures is non uniform, an extra cost might occur

when accessing memory outside the current NUMA node which would explain the increase in run

time for our 64 GB test case.

Overall, the combination of the popblt and HP features results in a significant performance im-

provement for the rank structures compared to the popbw and no HP version. Our improvements

allow performing rank(B, i, 1) at a cost close to that of one memory access, as we can perform all

calculations by accessing the cache hierarchy, and are therefore almost optimal.

3.3 Improving Select on Uncompressed Bitvectors

In addition to rank , many succinct data structures also use the select operation on bitvectors to emu-

late the functionality of a regular data structure. Here the implementation and optimization of select

on uncompressed bitvectors is investigated. First, an overview of non-constant select implementa-

tions used in practice is given (Section 3.3.1). Next, an implementation of the constant time select

structure proposed by Clark [1996] is discussed, which is more faithful to the space complexities

then previous implementations (Section 3.3.2). The block type distribution of the implementation is

analysed, which has also not been done before in previous work (Section 3.3.2). From this analy-

sis a simpler, more space efficient constant time select structure (Section 3.3.3) is proposed which

performs well in practice and outperforms commonly used O(log n) time solutions as well as our

faithful implementation of Clark [1996]’s structure in terms of both space and time. Last we perform

an extensive evaluation of different select data structures. Specifically, (1) scalability of different

solutions to larger data sets (2) effects of faster rank64 and select64 operations (3) effects of the

hugepage operating system feature (4) TLB and cache miss performance and (5) construction cost

are investigated. Additionally, implementations of Vigna [2008] are included in the evaluation to

show that the data structures tested are competitive.

3.3.1 Non Constant Time Select Implementations

A select(B, i, 1) operation can be solved by performing O(log n) rank operations over a bitvector

to determine the position of the i-th one bit using any of the rank representations discussed in Sec-

tion 3.2. González et al. [2005] show that using binary search on superblock values followed by

sequential search of the determined superblock is several time faster. González et al. [2005] sequen-
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Figure 3.5: Space overhead in percent and block type distribution of constant time select of Clark
[1996] of random uniform bitvectors (See Section 2.7.3) of size 128 MB with densities of 0.1%
(sparse) up to 50% (dense).

tially search within the superblock by using byte-wise popcnts and a bitwise search for the correct

bit in the final byte. This approach is referred to as SEL-BS. However, performing binary search for

large inputs is inefficient as the samples of the first binary search steps lie far apart, and can there-

fore cause cache and TLB misses. In this context, we use a second implementation of binary search

select , called SEL-BSH, which uses an auxiliary array H . The array contains 1024 rank samples

of the first 10 steps of each possible binary search in heap-order. SEL-BSH uses H to improve the

locality of the first 10 steps of the binary search.

3.3.2 Faithful Implementation of the Constant Time Structure of Clark [1996]

Clark [1996] presents a sub-linear space constant time 3-level data structure for select described

in detail in Section 2.2.3. González et al. [2005]’s verbatim implementation of Clark’s structure

caused 60% percent space overhead in addition to the original bitvector, and was slower than SEL-

BS for inputs smaller than 32 MB. We implemented Clark’s structure more space efficiently while

still staying faithful to the description given by Clark [1996]. This implementation is referred to as

SEL-CLARK.

Figure 3.5 shows the space usage of our implementation for bitvector densities of a 1 GB bitvector
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for densities ranging from 0.1% (sparse) up to 50% (dense). Recall that depending on the size r of

the superblock, the block may be represented as long blocks or a combination of blocks and mini

blocks. Note that our implementation uses at most 28% percent space in addition to the original

bitvector. The implementation overhead is at most 9% for dense bitvectors. Next the distribution

of the different block types in SEL-CLARK as described in Section 2.2.3 is discussed. The space

usage of super-blocks increases as the density increases. As the density increases, the distance r

covered by a superblock consisting of log n log logn one bits decreases. Therefore, the number of

superblocks stored increases. For very low densities (less than 1%), the size of a superblock is large

as the log n log logn one bits are spread out over a large area of the bitvector. Therefore each position

is stored explicitly in long-blocks. For densities around 1% the range r is too short for all positions

to be stored explicitly. The superblock is divided into blocks. However, the subdivided blocks are too

large to be efficiently answered by accessing the bitvector directly. Therefore,mini-blocks store each

position explicitly. As the density increases further, the subdivided blocks become smaller andmini-

blocks do not need to be stored explicitly as queries into subdivided blocks can be answered efficiently

through accessing the bitvector. For densities larger than 3 percent only blocks and superblocks are

stored. Overall, for all densities our implementation requires significantly less space than the worst

case 60% overhead. Note that the distribution of the different block types depends on the density of

the bitvector. In a random uniform bitvector used in the previous experiment, only a certain type of

block distribution can occur as the one bits are evenly spaced over the whole bitvector. However, real

data is only rarely uniformly distributed.

The space usage of our faithful implementation (SEL-CLARK) of Clark [1996] structure for real

world data sets with non-uniform distribution of one bits is evaluated. Figure 3.6 shows the block

distribution and overall space overhead for different real world data sets described in detail in Section

2.7.3. Each bitvector corresponds to the Huffman-shaped wavelet tree over the BWT of a given data

set. This corresponds to the same wavelet tree used in an FM-Index. Note that the density of a

wavelet tree is roughly 50%. For all tests files the space overhead is roughly 30%. The majority of

the space is evenly distributed between superblocks, blocks and implementation overhead. For some

files long-blocks and mini-blocks are also stored, but only contribute a small percentage to the overall

space overhead.

3.3.3 Engineering Constant Time Select on Uncompressed Bitvectors

There are two main problem of our faithful implementation of Clark’s structure. First is the compu-

tational overhead during query time and the second is implementation overhead. For a given query
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Figure 3.6: Space overhead in percent and block type distribution of constant time select of Clark
[1996] of bitvectors of the wavelet tree representation of a Huffman shaped wavelet tree over the test
files described in Section 2.7.3.

select(B, i, 1), the size r of the superblock determines how the query can be answered. To determine

if a given superblock is further divided, log r has to be calculated during query time. Next, if a super

block is subdivided, the size r′ of the correct subblock is also calculated during query time. Finally,

to determine if mini-blocks are stored, log r′ has to be calculated. These operations contribute sig-

nificantly to the cost of answering a single select query with the structure. Further, Clark’s structure

is constant in a theoretical sense only due to fact that any potential scan in the original bitvector is

asymptotically smaller than log n and can therefore be answered in constant time in the word-RAM

model. However, in practice the upper bound of the final scan “area”, 16(log log n)4, can be signifi-

cantly larger than log n. In both Figure 3.6 and in Figure 3.5 it can be seen that for most densities, no

mini-blocks are used. However, they do contribute significantly to the complexity and space overhead

of our implementation.

We now present an implementation of a simplified version of Clark’s proposal, called SEL-C.

Let m ≤ n be the number of ones in the bitvector B. The bitvector B is divided in superblocks

by storing the position of every W = 4096-th 1-bit. Each position is stored explicitly at a cost of

dlog ne ≤ 64 bits. In total d n64e bits or 1.6% additional space is needed to answer select queries for

every W = 4096-th 1-bit directly. Let x = select(Wi + 1) and y = select(W (i + 1) + 1) be the

border position of the i-th superblock. A superblock is called long, if its size r = y − x is larger or
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Figure 3.7: Space overhead in percent and mean time per select query in nano seconds for all
uncompressed select solutions over a bitvector of size 1 GB for densities of 0.1% to 50%. SEL-C is
evaluated for W = 2048, 4096 and 8192.

equal log4 n. As a result, storing each of the 4096 positions explicitly requires only 4096/ log3 n bits

per position which translates to only ≤ 10% overhead per bit in a 1 GB bitvector. If r < log4 n, the

superblock is classified as short, and it is further subdivided by storing the position of every 64-th

1-bit relative to the left border of the superblock. Within these sub-blocks, the original bitvector is

scanned to calculate the final position. This requires at most log r ≤ log(log4 n) = 4 log log n bits

per entry. Hence an upper bound for the space overhead is 4096
64 · log r = 64 · log r, which in the worst

case (r = 4096) results in an overhead of 64·log r
4096 = 64·12

4096 = 18.75%. For the important case of dense

bitvectors, the typical space overhead is much smaller than the worst case, since r ≈ 2 · 4096 which

translates into 64·log(8196)
8196 = 10.2% overhead per input bit.
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Time and Space Trade-offs of the Engineered Constant Time Select Implementation

Figure 3.7 shows the time and space efficiency of all uncompressed select implementations discussed

above for a bitvector of size 1 GB for densities ranging from 0.1% up to 50%. Again, the mean time

per query operation averaged over 100 million queries on our large test machine (LARGE) is reported.

Further, SEL-C is evaluated for W = 2048, 4096 and 8192 while using the three different popcnt

implementations evaluated in Section 3.1. The space usage of SEL-BS and SEL-BSH is identical but

larger for all densities. Only SEL-CLARK uses roughly 5% more space than the binary search-based

methods for densities at around 50% while providing much faster runtime performance. For small

densities, the space utilization of all SEL-C-based methods and SEL-CLARK is interesting. For very

low densities, the methods store the positions of all one bits explicitly. The space therefore increases

till the threshold log4 n is reached. This can be clearly observed in Figure 3.7. The smallest block

size W = 2048 reaches the threshold first and but is not visible as it occurs at a density smaller than

0.1%. The larger block sizes W = 4096 and W = 8192 reach the threshold later (green and purple

peak). Thus in the bottom row of Figure 3.7, one can observe the switch between block types. After

the peak is hit, then the space usage decreases as not all positions are stored explicitly. For densities

larger than 1%, the space usage again increases as more relative positions are stored. As calculated

above, for densities around 50%, the space overhead is roughly 10%.

The running time of the different implementations is shown in the top row of Figure 3.7. Overall,

the fast popblt implementation improves the running time of all implementations. The constant time

implementations SEL-C and SEL-CLARK benefit more as they potentially perform long sequential

scans in the original bitvector. The constant time implementations are always faster than the binary

search-based methods SEL-BS and SEL-BSH. Only for small densities, the SEL-C implementations

perform similarly to SEL-BS and SEL-BSH. For densities larger than 1%, both SEL-C and SEL-

CLARK always outperform SEL-BS and SEL-BSH. The different SEL-C implementations perform

similar. Only for small densities (less than 0.5%) the performance differs: the number of one bits

within a super block is determined by W (the block size). As W increases, the range covered by

the super block also becomes larger. Therefore, as W increases from 2048 to 4096 to 8192, the

density threshold where the data structure switches from storing every position explicitly to resorting

to storing relative positions and scanning the bitvector is different. For W = 2048, the space usage

already decreases for density 0.1%. This implies that as the density increases to 0.5%, less positions

are stored explicitly. For W = 4096, the space usage still increases till density 0.3%. This means

that more positions are stored explicitly and only at density 0.3% does the data structure switch to

storing relative positions. For W = 8192, this threshold is at density 0.5%. At these thresholds, the
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Figure 3.8: Mean time per select query in nanoseconds for all uncompressed select solutions over
a bitvectors of sizes 1 MB to 16 GB for densities of 0.1%, 1% and 50%. SEL-C is evaluated for
W = 2048, 4096 and 8192.

performance of SEL-C drastically decreases. As the switch occurs, the range covered by the super

blocks is just barely smaller than log4 n. This implies that, to answer a select query, large portions

of the bitvector have to be sequentially processed. Interestingly, the SEL-CLARK implementation

does not experience this problem. The data structure is carefully designed to avoid this problem by

switching between block types to cap the maximum space usage. However, as seen in Figure 3.5,

at around 1% density, SEL-CLARK uses mini blocks, which drastically increase the space usage

compared to all SEL-C, which does not use mini blocks. This can also be observed in Figure 3.7,

where for densities around 1%, SEL-CLARK uses more space than SEL-C, but allows faster retrieval

times.

To summarize, for bitvectors of size 1 GB, our reference implementation of Clark [1996] outper-

forms the binary search methods for all densities except 0.3%. For high density bitvectors (50%),

our reference implementation uses roughly the same space as the binary search methods but is sig-

nificantly faster. Our optimized SEL-C implementation is simpler, performs similar to our reference

implementation of SEL-CLARK, but uses significantly less space. For high densities, the space over-

head is roughly 10% compared to the 20% space overhead of SEL-BS and SEL-BSH.
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Scalability of the Engineered Constant Time Select Implementation

The performance of our implementations changes as the size of the used data sets increases. Fig-

ure 3.8 shows the performance of our data structures for varying data sizes. In this experiment, only

popblt is used as only the performance over different bitvector sizes is of interest. bitvectors of den-

sities 0.1%, 1% and 50% with variables sizes ranging from 1 MB to 16 GB are created. Again the

mean time for 100 million operations performed on our large test machine (LARGE) is reported. For

all densities and sizes the constant time solutions outperform the binary search-based implementa-

tions. For density 0.1%, SEL-C is roughly six times faster than SEL-BS and SEL-BSH for large

bitvectors. For very dense bitvectors, SEL-C is only two times faster. SEL-C always outperforms

SEL-CLARK. Interestingly, SEL-CLARK performs worse for bitvectorswith density 1%. This can

be explained by looking at the block type distribution graph shown in Figure 3.5. For bitvectors of

density 1%, SEL-CLARK uses many mini-blocks. These blocks are stored in compressed form which

requires more computational overhead to answer select queries. The hinted binary search implemen-

tation (SEL-BSH) performs significantly better than SEL-BS as the size of the bitvector increases.

3.3.4 Comparing different Select Implementations

Finally a similar experiment as discussed above is performed, but, we now measure the effect of

hugepages (HP) and our SSE enhancements on the overall performance of our engineered select

implementation, SEL-C, as well as SEL-BS and SEL-BSH. We choose not to include SEL-CLARK

in the following experiments as SEL-C always outperforms SEL-CLARK. In addition two further

select(B, i, 1) implementations called SELECT9 and SIMPLE proposed by Vigna [2008] are evaluated

to provide a better understanding how our data structures compare to other state-of-the-art proposals.

The implementations are referred to as SEL-V9 and SEL-VS. SEL-V9 builds select capabilities on

top of RANK-V. In addition to the rank counts, a two level inventory is stored at a total cost of

57.5% space overhead. SEL-VS similar to SEL-V9, uses a multi-level inventory to perform select

but does not require RANK-V during query time which results in less space-overhead. Similar to

the select structure of Clark [1996], a three-level structure is used in SEL-VS. However, SEL-VS is

algorithmically engineered to use only 64-bit and 16-bit words instead of using integers of size log r

which are more expensive to access and store. For very large superblocks, SEL-VS further stores the

absolute positions of each set bit using a 64-bit word, whereas Clark’s structure stores the position in

log r bits relative to the beginning of the superblock. For smaller superblocks, the positions are not

stored explicitly. Instead, two inventories are used to find a region in the original bitvector which is

then scanned sequentially to find the correct i-th bit position.
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Figure 3.9: Average time for a single select operation on uncompressed bitvectors dependent on the
size (16 MB/16 GB), the density (5/50) of the input, the implementation (SEL-BS/SEL-BSH/SEL-C-
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Address Translation Cost

Address translation can have an effect on the performance of select data structures. To elucidate the

effect of address translation, two bitvectors of size 16 MB and 16 GB are created, and the time for

one random select query over bitvectors of densities 5% and 50% is evaluated. This is in line with

densities (5, 20, 50) chosen by previous studies such as González et al. [2005]. For each density 100

million select queries are performed and the mean time per query as well as the mean number of

TLB and L1 cache misses per select query is measured. Only timing results are shown in Figure 3.9.

In Table 3.3 the mean number of cache and TLB misses per select query caused by the different

implementations for densities 5%, 20% and 50% are shown.

For the large data set and 5% density, the constant time select method SEL-C is roughly 60%

faster than fast as the cache-friendly binary search select implementation SEL-BSH and twice as

fast as the unoptimized SEL-BS implementation. For the small data set at the same density, SEL-C

is twice as fast as both SEL-BSH and SEL-BS. For 50% density SEL-C is twice as fast than both

SEL-BS and SEL-BSH for the small and large data set. To conclude, for all data sets and all densi-

ties, constant time select (SEL-C) always outperform both binary search select implementations. Our

cache-friendly implementation (SEL-BSH) generally outperforms the non optimized SEL-BS imple-

mentation by 10 to 20 percent for larger data sets. For small data sets, no effect can be seen as
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the cache-friendly “hinting” has no effect. For all 16 MB test instances, the bitvector and the sup-

port structure fit in one 1 GB hugepage. Therefore, all structures benefit from enabling the features

(popblt+HP). All structures become roughly twice as fast for the small test case. Overall, the two-level

structure SEL-C outperforms SEL-BS, SEL-BSH and SEL-V9 for small instances, but is slower than

SEL-VS. Further note that the performance of SEL-BSH and SEL-BS is almost identical as address

translation for small instances does not significantly affect runtime performance (see our analysis of

rank for details). For the 16 GB instances, all run times increase due to the increasing cost of TLB

and cache misses as described in the discussion of our rank experiment in Section 3.2. As expected

SEL-BSH outperforms SEL-BS since the first 10 memory accesses cause no TLB miss. However,

the unoptimized implementation (poptable+ 4 kB pages) of our 2-level SEL-C approach outperforms

both binary search approaches even with SSE+ HP enabled. Without the features, SEL-C is slightly

faster than SEL-V9 for d = 5% and roughly the same speed for d = 50%. For all instances SEL-VS

outperforms our new two-level approach SEL-C.

L1 cache and TLB performance

Cache performance of all select implementations in our experiments are shown in Table 3.3. Note

that the cache and TLB performance of all select implementations is up to two times worse than

the equivalent rank implementations shown in Table 3.2. Overall SEL-C is always more cache-

efficient than both binary search implementations for all data sets. Our cache friendly binary search

implementation (SEL-BSH) shows significantly better L1 cache and TLB miss performance. For the

large data set, SEL-BS causes, on average, 25.6 TLB misses using 4 kB pages. For a bitvector of

size 16 GB there are 33, 554, 432 superblocks. Performing binary search over the superblocks takes

log(33, 554, 432) = 26 steps. However, as a page is 4 kB, in the “final” steps of the binary search only

“jump” inside a page, not causing any additional TLB misses. One additional TLB miss is caused by

accessing the bitvector to perform the final scan inside the block. This explains the average number

of 25.6 misses for 4 kB pages. SEL-BSH causes 10.3 TLB misses on average. 1024 rank samples

are stored in heap order to reduce the number of cache misses during binary search. These samples

can be used to perform binary search over the superblocks while not causing TLB misses in the

first 10 steps. Therefore, only 16 accesses to the superblock vector are required, which explains the

reduction in total TLB misses for SEL-BSH. Hugepages (HP) also affect the performance of SEL-BS

and SEL-BSH. With 1 GB pages, the complete superblock array fits into at most two pages causing

at most 2 TLB misses during the binary search steps. Next, we additionally access the bitvector to

perform the sequential scan which can also at most two additional TLB miss (in the worst case a scan
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TLB misses / L1 cache misses per operation overhead in %

SEL-BS SEL-BSH SEL-BS SEL-BSH

poptable popblt+HP poptable popblt+HP

density d = 5

16 MB 1.2 / 13.8 0.0 / 12.5 1.3 / 10.9 0.0 / 10.1 19 19
16 GB 25.6 / 67.9 7.4 / 68.7 10.3 / 43.3 5.9 / 40.3 20 19

density d = 20

16 MB 1.2 / 14.2 0.0 / 13.8 1.3 / 11.1 0.0 / 10.9 19 19
16 GB 25.6 / 68.4 7.4 / 68.8 10.3 / 43.5 6.0 / 40.2 20 20

density d = 50

16 MB 1.3 / 13.8 0.1 / 13.2 1.5 / 10.6 0.1 / 10.6 19 19
16 GB 25.7 / 68.0 7.5 / 69.0 10.6 / 44.0 6.6 / 40.6 20 20

SEL-C SEL-VS SEL-C SEL-VS

poptable popblt+HP poptable popblt+HP

density d = 5

16 MB 0.9 / 7.9 0.0 / 7.5 1.3 / 4.3 0.0 / 3.6 2 11
16 GB 4.9 / 13.7 3.9 / 10.2 3.0 / 7.8 2.8 / 3.6 2 11

density d = 20

16 MB 1.3 / 7.3 0.0 / 6.7 1.4 / 4.5 0.0 / 3.7 5 11
16 GB 5.0 / 13.0 4.4 / 8.9 3.0 / 8.1 2.9 / 3.8 5 11

density d = 50

16 MB 2.1 / 6.9 0.0 / 5.7 1.2 / 5.2 0.0 / 4.3 12 7
16 GB 5.2 / 12.9 4.9 / 8.1 3.0 / 8.8 2.8 / 4.4 12 7

Table 3.3: Average number of TLB misses/L1 cache misses per select operation dependent on imple-
mentation (SEL-BS/SEL-C-4096/SEL-CLARK), used rank64 method (poptable/popblt) and activation
of 1 GB pages (HP) on bitvectors of different sizes (16 MB/16 GB) and densities (5/20/50).

over a page boundary causes a second TLB miss). When performing select64, an additional lookup

table is accessed to process the last byte which can also cause an additional TLB miss. Therefore, the

number of 7 TLB misses, on average, seems reasonable. SEL-BSH only causes 2.7 TLB misses on

average. First the samples are accessed. Next the superblock and the bitvector are accessed which can

also cause additional TLB misses. Note that our analysis does not completely explain the measured

number of TLB misses. However, this could be caused by the fact that there are only 4 TLB entries

for hugepages available in the system (see Section 2.7.1). Our program could further access memory
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regions outside of the hugepage mapped memory area which could cause normal TLB misses which

are also counted in our measurements. However, our analysis only tries to explain the “order of

magnitude” of TLB misses measured. SEL-VS uses only byte aligned accesses to words of size 16

or 64 bits. SEL-C stores positions bit-compressed. This results in slower runtime performance and

an increased number of L1 cache misses.

Table 3.3 further shows the space overhead required for each select structure. The binary search

methods use 20% overhead. The size of the “hints” in SEL-BSH is only 8 kB and is therefore neg-

ligible. For densities d = 5 and d = 20 SEL-C is substantially smaller than SEL-VS. However, for

d = 50 SEL-VS is smaller than SEL-C.

Comparing different Select Implementations on Real World Data

As suggested by Vigna [2008], it is important to evaluate the performance of select structures on

unevenly distributed bitvectors. We therefore evaluate the performance of all select structures dis-

cussed above on several real world data sets. The “real world” bitvector instances are extracted from

the Huffman-shaped wavelet tree as described in Section 2.7.1. Figure 3.10 shows the time-space

trade-offs of each structure for all test instances. We contrast the mean time per select operation

over 10 million random queries with the space overhead of each structure in percent of the origi-

nal bitvector. Note that the real world data sets roughly have about 50% density as they represent

a Huffman-shaped wavelet tree. Another property is that they contain long runs as well as evenly

distributed regions. Long runs occur frequently in the bitvectors of human generated texts, which

contains words and are structured. We observe in Figure 3.10 that overall SEL-BS and SEL-BSH

are not competitive. SEL-V9 is faster than the binary search methods but requires 57% overhead.

SEL-VS is always the fastest method but the space usage varies between different data sets. For

WEB-WT-1GB, SEL-VS uses 35% overhead whereas SEL-C uses only 13%. The same behavior can

be observed for SOURCES-WT-200MB, ENGLISH-WT-200MB and DBLP.XML-WT-200MB. On the

one hand, for bitvectors with few runs (PROTEINS-WT-200MB, DNA-WT-200MB,DNA-WT-1GB)

the space usage of SEL-VS is about the same as for evenly distributed bitvectors and therefore less

than SEL-C.

The performance of select64 on run time of select on bitvectorsis also of independent interest.

For all evaluated select structures, only one select64 operation is performed to determine the position

of the i-th bit in a target word x. Before this step, potentially many other operations such as popcnts

in a sequential scan or binary search are performed to determine x. We measure the effect of using a

slow select64 method (seltable) compared the fastest method (selblt) of the target word on the overall



Improving Select on Uncompressed Bitvectors 82

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
pe

rs
el
ec
t

(µ
s)

PROTEINS-WT-200MB (d = 54.04%)

Implementation

SEL-BS

SEL-BSH

SEL-C

SEL-V9

SEL-VS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
pe

rs
el
ec
t

(µ
s)

DNA-WT-200MB (d = 58.92%) DNA-WT-1GB (d = 58.28%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
pe

rs
el
ec
t

(µ
s)

DBLP.XML-WT-200MB (d = 53.24%) WEB-WT-1GB (d = 52.85%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
pe

rs
el
ec
t

(µ
s)

0 10 20 30 40 50 60

Space overhead in (%)

ENGLISH-WT-200MB (d = 53.88%)

0 10 20 30 40 50 60

Space overhead in (%)

SOURCES-WT-200MB (d = 52.92%)

Figure 3.10: Time-space trade-offs for a single select operation on uncompressed bitvectors for
different “real world” data sets of the implementations SEL-BS, SEL-BSH, SEL-C-4096, SEL-V9
and SEL-VS. For all implementations the features popblt+HP were used.
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performance of the structure. For small instances, the running time for SEL-C and SEL-VS decreases

by 10 to 20%, for the binary search structures it decreased by 7%. For large instances, the running

time for SEL-C and SEL-VS decreases only by 2% to 5%. The binary search solutions do not benefit

from improved select64 on large instances as the running time is dominated by binary search and the

resulting TLB misses. Interestingly, the running time for SEL-V9 decreases by 30% for all instances

while all other select structures improve mostly for small instances.

Construction cost of a select structure should also be considered when evaluating different data

structures. We use both popcnt and select64 methods during the construction of our SEL-C structure.

We observed an improvement in construction cost by up to an order of magnitude (up to 30 times

faster for the random bitvectors used in our experiments) compared to versions with simple bit-by-bit

processing during construction.

To summarize, SEL-C and SEL-CLARK are more TLB and cache efficient than the commonly

used binary search alternatives. This is not noticeable for small data sets but for large data sets, the

constant time solutions are significantly more cache and TLB friendly than the binary search alterna-

tives. This can be directly observed in the overall performance of the constant select implementations

discussed in this chapter. Both SEL-C and SEL-CLARK perform similar to state-of-the-art engineered

select data structures while using less space and having much faster construction time. Especially the

hugepage feature available in many modern operating systems can lead to significant performance

improvements.

3.4 Optimizing Rank and Select on Compressed Bitvectors

To save space, succinct data structures often use compressed bitvector representations instead of un-

compressed bitvectors. In this section we try to improve the H0 compressed bitvector representation

of Raman et al. [2002] (RRR) discussed in detail in Section 2.2.4. Here we specifically focus on a

proposal by Navarro and Providel [2012]. First we review the idea of on-the-fly encoding and de-

coding of blocks. Next we discuss practical improvements to the on-the-fly encoding and decoding

scheme which we later evaluate in an extensive evaluation. In our experiments we show: (1) how the

different components of RRR contribute to the size of the bitvector (2) how many blocks are affected

by our optimizations and (3) how our optimizations affect the performance of rank , select and access

on the compressed bitvector representation.

Recall that bitvectors are split into blocks of size K. The blocks are then represented in succinct

form using two components C and O. Additionally, samples to allow efficient rank and select over

the compressed bitvector are stored in a third class S. Previously the block size was constrained
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function of block size K for two different bitvectors. The sample rate t was set to 32. The original
bitvectors of size 1 GB were extracted from wavelet trees of WEB and DNA text.

to K ≤ 15 by the size of the lookup-table required for encoding and decoding individual blocks.

Navarro and Providel [2012] propose an on-the-fly decoding scheme based on Pascal’s triangle which

does not require the lookup-table, and thus allows for the use of larger block sizes In their initial

proposal, Navarro and Providel use block sizes of up to K = 64. In this section we first evaluate the

effect of K on the compressibility of the different class types which to our knowledge has not been

done before. We use the results of our evaluation as a motivation to provide an implementation which

uses block sizes K up to 255 bits. We further provide several implementation tricks which in turn

translate to significant performance improvements in practice.

The total space of O is bounded by about nH0 + n
K bits (see [Pagh, 1999]). Bitvector C is

bounded by n logK
K bits, and bitvector S by 2n logn

tK bits. If the bitvector is compressible – that is

H0 � 1 – then the size of C is dominant if K is small. Figure 3.11 shows the space usage of the

individual components (C,O,S) for two, “real world” bitvectors WEB-WT-1GB and DNA-WT-1GB.

For WEB-WT-1GB, which is highly compressible, a block size of K = 15 compresses the up to 50%

of size of the original bitvector. Here the samples S, contribute and the block class type C contribute

significantly towards the overall space usage of the compressed representation. For K = 64, the

space used by the samples S, is proportionally small compared to the class type C and the offsets

O. However, the class types still significantly contributes to the overall space usage. For K = 255,

the majority of the space is used by the offsets (O). The second data set, DNA-WT-1GB, is not very

compressible. Therefore, increasing the block size K beyond 64 does not significantly reduce the
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overall size of the compressed representation. However, for larger block sizes the contributions of C

and S are not significant. Overall, for compressible data, it is advantageous to increase the block size

of H0 compressed bitvectors beyond the limits explored in previous work.

On-the-fly Encoding and Decoding

The implementation of Claude and Navarro [2008] uses blocks of sizeK = 15 and decodes bi (block

i at position i ×K) from (κi, λi) (the class type κi of the block and the offset λi within the block)

via a lookup table. Unfortunately, for larger K lookup tables are not practical. Navarro and Providel

[2012] recently proposed a solution to overcome this obstacle by spending more time on the decoding

process: they encode and decode blocks in O(K) time on-the-fly. During the encoding process λi is

computed from a block bi with κi set bits as follows: initially λ = 0. First, the least significant bit in

bi is considered. There are
(
K−1
κi

)
blocks ending on zero and

(
K−1
κi−1

)
ending on one. If the last bit is

one, λi is increased by
(
K−1
κ

)
(that is the number of blocks of ending with zero); otherwise λi is not

changed. In the next step, K is decreased by one, and κi is decreased by one if the last bit was set.

bi is shifted to the right and we reevaluate the least significant bit. The process ends when κi = 0.

This is shown in detail in Figure 3.12 where we encode bi =0101011 with K = 7 and ki = 4. We

start with
(
K
ki

)
=
(

7
4

)
and process the least significant bit which is 1. As we are processing a one bit,

we add
(
K−1
ki

)
=
(

6
4

)
= 15 to λi. After every step we decrease K by one. If we processed a one bit

we also decrease ki as there is one less one left to process. Next we process the second last one bit.

We add
(
K−1
ki

)
=
(

5
3

)
= 10 to λi and again decrease both K and ki. Next we process the first 0 bit

which implies we only decrease K. Next we process the next 1 bit by adding
(

3
2

)
= 3 to λi and again

decreasing both K and ki. We process the next 0 bit by only decreasing K. Finally we process the

last 1 bit by adding
(

1
1

)
= 1 to λi. We decrease ki which is now 0 and we finish the encoding process

in O(K) time. Therefore, bi =0101011 is encoded as ki = 4 and λi = 15 + 10 + 3 + 1 = 29.

In Figure 3.12, we “walk” the encoding process is visualized as the red path in Pascal’s triangle. At

each step we decrease K by one. We walk “left” by decreasing ki each time we process a one bit. If

a one bit is processed we add the “blue” coefficients to λi.

A block bi can be recovered from λi and κi as follows: if λi ≥
(
K−1
κi

)
, then the least significant

bit in b was set. In this case λi is decreased by
(
K−1
κi

)
and κi by one. Otherwise the least significant

bit was a zero. In the next step, K is decreased by one. The decoding process ends when κi = 0. In

Figure 3.12, this would imply “walking” the same path as in the encoding process, deciding at each

step, if we processed a one bit or zero bit based on the value of λi and
(
K−1
κi

)
. On-the-fly decoding

requires only O(K) simple arithmetic operations (subtraction, shifts and comparisons) and a lookup
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Figure 3.12: On-the-fly encoding of λi by walking Pascal’s triangle for bi =0101011, K = 7,
ki = 4. We start the encoding process at

(
K
ki

)
=
(

7
4

)
. Each time we process a one bit, we decrease ki

by one and add
(
K−1
ki

)
to λi. Every step we decrease K by one. The process stops once ki = 0.

table of sizeK2 to calculate the binomial coefficients. Navarro and Providel [2012] use block size of

K = 63, which reduces the size of C to 98 MB. This is still as big as C (97 MB) for WEB-WT-1GB,

and it was reported that the use of K > 63 results in runtimes orders of magnitudes slower than for

smaller K [Navarro and Providel, 2012].

Practical Optimizations to On-the-fly Decoding

On-the-fly decoding requires only O(K) time to recover a block bi from ki and λi. However, this

process can be improved by applying the following optimizations.

First, the access operation can immediately return the result if block bi contains only zeros or

ones. We call this block uniform. A uniform block during the decoding process will either return

bi = 0K or bi = 1K . Therefore, depending on ki, we can immediately return the correct result (a zero

or one bit) for access without scanning O or accessing S. The rank operation can immediately return

its result if the (̃i+1)-th and ĩ-th rank sample in S differ by 0 or tK, saving the scanning of C. At first

glance, this optimization seems to be trivial, however in text indexing the bitvectors of wavelet trees

often contain long runs of zero and ones and we therefore conjecture that this optimization will be

effective in practice. Figure 3.13 shows the percentage of uniform blocks for variable block sizes K

over bitvectors of wavelet trees over BWT of several real world data sets described in Section 2.7.3.
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For WEB-WT-1 GB up to 90% of the blocks in the compressed bitvector are uniform. With our

optimization we will therefore almost never have to access the offset array O to decode a block.

For other files the percentage of affected block ranges from 30% to 80%. This can be explained as

follows. The BWT over a given sequence S tends to group symbols with similar context in S together.

This results in long runs of identical symbols in the BWT. These runs are then “translated” into runs

in the wavelet tree representation of the BWT. At each level, the runs are mapped to the same subtree,

which again results in a run of zero or one bits in the compressed bitvector representation. Therefore,

our optimization is especially useful when using BRRR in the context of succinct text indexes, where

generally a wavelet tree over the BWT is used to represent a sequence S. However, sequences without

long runs of zeros or ones will not exhibit the same percentage of uniform blocks and will thus not

benefit from this optimization.

Second, if a block bi has to be decoded, than we can apply an optimization if the block contains

only few ones: we first check if κi ≤ K
logK . That is, if the block is sparse. Especially for large block

sizes K, it is faster to determine the κi positions of ones in bi by performing κi binary searches over

the columns in Pascal’s triangle instead of performing a complete sequential scan. Figure 3.13 shows

the percentage of sparse blocks for variable block sizes K over bitvectors of wavelet trees over the

BWT of several real world data sets described in Section 2.7.3. As there are very long runs of uniform

blocks in the shown data sets, the number of sparse blocks is less substantial. We therefore suspect

our second optimization to be less effective than our first. However, for data sets without long runs,

we suspect there to be more sparse blocks.

Experimental Evaluation

Recall that larger block sizesK for theH0-compressed bitvector representation can lead to significant

space savings, as shown in Figure 3.11. In this section we explore how the runtime performance of

H0-compressed bitvectors. First we evaluate the impact of our optimizations on the performance

of rank and access . Figure 3.14 shows the improvements in running time for both operations for

WEB-WT-1 GB and DNA-WT-1 GB analysed in Figure 3.13. Recall that for WEB, almost 90% of

the blocks are uniform. Therefore, the first optimization on uniform blocks described above is very

effective. This can be clearly observed in Figure 3.14, as the optimized version of both rank and

select is roughly twice as fast. Figure 3.13 shows that DNA-WT-1 GB contains fewer blocks that

are affected by our optimizations. This can be clearly seen in Figure 3.14, as the optimized version

is only slightly faster. The second proposed optimization – decoding with binary searching Pascal’s

triangle if only few set bits are in the block – only improved the runtime for the random bitvectors of
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mizations on H0 compressed bitvectors with long repetitions using variable block sizes K.

densities d ≤ 5%. The runtime was reduced by 10% for d = 5% and 50% for d = 1%.

Next we evaluate how the performance of all operations is affected by the choice of K. In our

implementation of BRRR we used built-in 64- and 128-bit integers for block sizes K ≤ 64 and

K ≤ 128, the latter with SSE. ForK ≥ 129 we used our own tailored class for 256-bit integers. Note
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Figure 3.15: Query times for the operations on the H0-compressed bitvector as function of block size
K. The sample rate t was set to 32.

that the size of the lookup tables for Pascal’s triangle for the on-the-fly decoding is therefore 32 kB,

256 kB and 2 MB for the three different integer types. In the special case of K = 15 we do not use

on-the-fly decoding but use on access to a lookup table of size 64 kB to get the 15-bit block instead.

In this case we also use broadword computing to calculate the sum of multiple block types κis. The

latter can be done, since the κis are stored in nibbles and we can applying line 6−7 of Algorithm 3.1

and get the sum as the last byte of b then. For all other block sizes we sum up each κi individually

and use the on-the-fly decoding in the last block bi′ .

Figure 3.15 depicts the resulting runtime for the three operations access , rank , and select as

function of K for the bitvectors WEB-WT-1GB and DNA-WT-1GB. We first concentrate on the op-

erations access and rank . Note that the specialized implementation for K = 15 can be recognized

clearly: it is about twice as fast as the on-the-fly decompression with comparable block sizes.

We can observe that the runtime of the on-thy-fly decoding version linearly depends on the block

size. The constant of the linear correlation is determined by two factors: the used integer type and the

structure of the original bitvector, where the latter has a stronger impact than the former. The reason

is the number of uniform blocks in WEB-WT-1GB is much larger than in DNA-WT-1GB as shown

in Figure 3.13. Thus, for WEB-WT-1GB we decode significantly less blocks than in DNA-WT-1GB

which leads to overall faster rank and access operations. The time for select , which is implemented

using binary search, slightly decreases when we increase the block size and native arithmetic is used.

ForK ≥ 64 the decoding costs become too dominant and we can not observe the reduced time for the

binary search on less rank samples any more. The effect of the integer type can be clearly observed
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by the transitions from using 64- or 128-bit integers to the own tailored 256-bit integers which also

have to use a lookup table which does not fit in the L2 cache.

Overall, the run time the runtime of the on-thy-fly decoding version linearly depends on the block

size K. The performance of H0 compressed bitvectors directly correlated with the compressibility

of the data set. More runs in the BWT of a text allow the text to be compressed more efficiently. As

shown in Figure 3.15, the query time can also be greatly reduced on compressible texts using our

proposed optimizations.

3.5 Optimizing Wavelet Trees

Especially in succinct text indexes, operations rank and select are performed not on binary alphabets

over a bitvector but over a sequence of symbols with a larger alphabet. A wavelet tree (described in

detail in Section 2.3) is commonly used to decompose performing rank and select over sequences of

larger alphabets to performing rank and select on multiple bitvectors. Thus wavelet trees profit from

the optimizations on compressed and uncompressed bitvectors discussed in this chapter.

In this section we describe two additional optimization techniques for wavelet trees. First we

discuss cache-efficient processing of wavelet trees while performing rank in the context of backwards

search. Second, we discuss bit-parallel wavelet tree construction which outperforms traditional bit-

by-bit construction by up to 150 times.

3.5.1 Cache-Aware Wavelet Tree Processing

In the context of creating cache-friendly succinct data structures, performing rank operations on

wavelet trees can often also be performed in a cache-aware way. Consider a regular COUNT query

in a FM-Index discussed in Section 2.5.2 in the context of backwards search. During each step, one

symbol of the pattern is processed by performing two rank operations on the wavelet tree of the

BWT. Interestingly, both rank operations calculate the rank of the same symbol c, before and after

the current matching range 〈sp, ep〉. Therefore, both rank operations, in each processing step follow

the same path in the wavelet tree. The range 〈sp, ep〉 generally also decreases with each processing

step of the pattern. Consequently, the two rank operations can thus be expected to occur closer to

each other as the pattern is processed. Using a wavelet tree in a FM-Index can be performed cache-

aware by performing the two rank operations at each level of the wavelet tree at the same time. In the

lower levels of the wavelet tree, it is expected that during both binary rank operations, superblocks

close to each other are accessed. Therefore, performing both rank operations simultaneously can

lead to increased COUNT performance due to cache effects.
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Figure 3.16: Wavelet tree construction time for two data sets. Run-aware construction utilizing SSE

is compared to bit-by-bit wavelet tree construction in LIBCDS.

To test this assumption, both regular wavelet tree processing and cache-aware processing are

compared by replicating the COUNT experiment in the experimental study of Ferragina et al. [2008].

Overall 50, 000 count queries of length 20 are performed. The mean time taken to process one

character in a query is shown in Figure 3.16. The FM-Index is parametrized using a Huffman-shaped

wavelet tree and the cache friendly bitvector representations RANK-V and RANK-IL which were

evaluated in Section 3.2. The performance for the DNA and WEB data sets of size 1 GB is evaluated.

Interestingly, the cache effects are only significant for the WEB data set, whereas the DNA data set

shows no run time improvements. This can be explained as follows. Random patterns of length

20 occur more frequently in the DNA data set. The total number of occurrences for all patterns is 46

times larger for the DNA data set compared to the WEB data set. Therefore, the 〈sp, ep〉 ranges of each

pattern are larger throughout the backward search steps of each pattern. This results in more cache

misses even when both rank operations are performed at the same time as the ranges are to large to

produce a cache effect during simultaneous rank processing. For the WEB data set and RANK-IL, the

run time performance increases by 30% whereas the RANK-V-based wavelet tree is only 10% faster

in the cache-aware setting. Overall, if patterns do not occur often in the text, performing cache-aware

processing of the wavelet tree can lead to substantial gain in run time performance during pattern

matching.
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Figure 3.17: SSE-enabled wavelet tree run detection using the SSE4.2 instruction PCMPESTRM to
detect runs in the text by shifting the text by one symbol and comparing the shifted string T + 1 to the
original string T .

3.5.2 Wavelet Tree Construction

Wavelet trees need to be constructed as part of the creation of most succinct text index represen-

tations. Performing construction efficiently is therefore important. Regular bit-by-bit wavelet tree

construction used in popular compressed data structure libraries such as LIBCDS can take longer than

constructing the BWT 2. In contrast, efficient wavelet tree construction such as the run-aware ver-

sion proposed by Simon Gog in his SDSL library3 is up to several orders of magnitudes faster than

bit-by-bit processing 4. Thus, the construction of the BWT is the major bottle neck during succinct

text index construction, whereas wavelet tree construction can be performed efficiently. Here we will

briefly discuss the efficient wavelet tree construction algorithm used in the SDSL library. We then

show how using SSE instructions can further decrease the construction time of wavelet trees by up to

30%.

Wavelet trees used in succinct text indexes are mostly built over the BWT of a given text. If the

text is compressible, the BWT tends to contain long runs of symbols due to the their similar con-

text. Therefore, instead of processing each symbol individually, processing runs of symbols during

wavelet tree construction can improve the overall construction cost. Detecting runs efficiently can

significantly improve the run time performance of wavelet tree construction. Instead of keeping track

of the preceding symbol while processing the text we utilize parallel string comparison instructions

available in SSE 4.2.

To detect runs in the BWT efficiently, we use the parallel string comparison instruction PCMPESTRM

which can be configured to return a bitvector indicating character mismatches. We compare the orig-

inal string T with the string T + 1 which corresponds to T shifted one symbol to the right. The

PCMPESTRM5 instruction then returns a bitvector indicating, with a set bit, the beginning of runs
2see later experiments in this section
3https://github.com/simongog/sdsl
4personal communication with Simon Gog
5See Intel SSE4 Programming Reference
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Figure 3.18: Wavelet Tree construction time for several real world data sets. Run-aware construction
utilizing SSE is compared to bit-by-bit wavelet tree construction in LIBCDS. Note the log scale of the
y-axis.

in the BWT. We can then use rank64 and select64 to efficiently determine run-length and starting

positions of each run. The main idea is shown in Figure 3.17. Next three different Huffman-shaped

wavelet tree construction algorithms are compared empirically.

Experimental Evaluation of Wavelet Tree Construction

We compare regular bit-by-bit construction used in the LIBCDS library to the run-aware construction

method used in SDSL and our SSE enhanced run-aware method. We construct the wavelet tree over

the BWT of the DNA and WEB data set of size 1 GB. The results are shown in Figure 3.18. Note

that the y-axis is shown as a log scale. For both data sets the bit-by-bit construction method is much

slower than the run aware methods. For WEB, the standard run aware method is 120 times faster as

there are many runs in the WEB data set. For the DNA data set, the standard run aware method is

37 times faster. The SSE enabled method is 15% faster than the standard run aware method for the

DNA data set and 25% faster for the WEB data set. This can not be clearly seen in Figure 3.18, as

both methods are much faster than the bit-by-bit construction method. Interestingly, constructing a

Huffman shaped wavelet tree using the bit-by-bit method is more expensive than constructing the

BWT from the original text: constructing the BWT for WEB requires 181 seconds whereas the wavelet

tree construction algorithm used in LIBCDS requires 1995 seconds. In contrast, our SSE enabled run-

aware algorithm uses only 13 seconds. Overall, efficient wavelet tree construction is an important



Effects on Succinct Text Indexes 94

aspect of efficient construction of succinct text indexes.

3.6 Effects on Succinct Text Indexes

In this section we investigate the effect caused by using faster rank and select implementations on the

performance of succinct text indexes. We mainly focus on FM-Indexes discussed in Section 2.5. First

we establish that our implementations are competitive to commonly used implementations proposed

by Ferragina et al. [2008]’s study using the Pizza&Chili corpus. We then show how our implementa-

tions profit from the optimizations on bitvector representations discussed above.

For simplicity, we only focus on count queries in our evaluation. A count query for a pattern

of length m can be reduced to about 2mH0 rank queries if a Huffman-shaped wavelet trees is used,

or at most 2m(H0 + 2) rank and 2m select queries if the run-length encoded wavelet trees is used.

We therefore expect that our improvements in the previous section will directly translate into corre-

sponding speedups of our FM-Index. We specifically do not evaluate extract and locate queries as

their underlying algorithm relies on sample parameters which introduce additional dimensions in the

experimental evaluation.

3.6.1 Text Index Implementations

We compare our implementations and improvements the widely used baselines provided by Ferragina

et al. as part of an extensive study [Ferragina et al., 2008]. They provide multiple implementations of

common index types as well as the widely used Pizza&Chili-corpus discussed in Section 2.7.3. Here

we give a short description of the baseline implementations which we will compare against:

SSA The Succinct Suffix Array [Mäkinen and Navarro, 2004] is an FM-Index based

on a Huffman-shaped wavelet tree. The wavelet tree uses uncompressed

bitvectors and a one level rank data structure with 5% space overhead and

popcnt implementation poptable. Implementation by Veli Mäkinen and Ro-

drigo González

SSA-RRR Same index as SSA but the H0-compressed bitvector representation of Pagh

[1999]; Raman et al. [2002] implemented by Claude and Navarro [2008] is

used.
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RLFM Run-length wavelet tree [Mäkinen and Navarro, 2005] implementation by Veli

Mäkinen and Rodrigo González. The two indicator bitvectors for the run heads

in the BWT are represented by uncompressed bitvectors and the same rank

structure as in SSA. The select operation is solved by a binary search over the

rank samples.

SAu Plain suffix array [Manber and Myers, 1993] implementation by Veli Mäkinen

and Rodrigo González.

We compiled the implementation with all optimizations and added flag -m32 since our platform

is 64-bit and the code is 32-bit which limits the usage of these indexes to small inputs.

Our Corresponding Implementations We create comparable SDSL indexes for the presented base-

line indexes by parametrizing SDSL FM-Indexes and CSAs with comparable basic data structures.

The following list gives an overview.

FM-HF-V5 FM-Index based on a Huffman-shaped wavelet tree (wt huff) which is

parametrized with the uncompressed bitvector (bit vector) and the

6.25% overhead rank structure rank support v5<>. Corresponds

to the baseline index SSA.

FM-HF-R315 Same as FM-HF-V5 except that the wavelet tree is parametrized with

the compressed bitvector rrr vector<15> and its associated rank

and select structures. Corresponds to the baseline index SSA-RRR.

FM-HF-R3K A family of more space-efficient FM-Indexes. Realized by parametriz-

ing the wavelet tree of FM-HF-V5 by the rrr vector<K>

FM-RLMN FM-Index based on a run-length compressed wavelet tree (wt rlmn)

which is configured with compressed bitvectors (BV-SD) for the two

indicator bitvectors. Corresponds to the baseline index RLFM.

CSA-SADA The SDSL CSA class (csa sada) parametrized with Elias-δ coder and

Ψ sampling density of 128. Corresponds to CSA.

Note that all these indexes do not contain SA or ISA samples which are not required to answer count

queries efficiently.
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SSA SSA-RRR RLFM SAu

Time Space Time Space Time Space Time Space
(µs) (%) (µs) (%) (µs) (%) (µs) (%)

200 MB test instance
XML 1.300 69 1.776 34 6.108 52 0.436 500

DNA (P&C) 0.548 29 0.812 30 1.216 62 0.388 500
ENGLISH 1.156 60 1.676 40 1.744 67 0.372 500

PROTEINS 1.024 56 1.668 55 1.704 76 0.368 500
SOURCES 1.356 72 1.960 41 1.864 61 0.364 500

Table 3.5: Time and space performance of four Pizza&Chili FM-Index implementations on five dif-
ferent inputs for count queries. The space of an index is stated in percent of the input text. The time
is the average time to match one character in a count query. It was determined by executing 50, 000
queries, each for patterns of length 20, which were extracted from the corresponding texts at random
positions.

3.6.2 Baseline Comparison

To validate our results we first compare the competitiveness of our implementations to baselines

commonly used in the succinct data structure community. Here we reproduce the count experiment

from Ferragina et al. [2008]’s study. They report the average time to match one character in a count

query. It was determined by executing 50, 000 queries, each for patterns of length 20, which were

extracted from the corresponding texts at random positions. Our machine is much faster than that of

Ferragina et al. To compare our implementation to the baseline we therefore reproduce the counting

experiment from Section 5.2 (Table VI) in their paper. Table 3.5 shows the results of the reproduced

experiment. Note that re-running the experiments on our machine improves the running times of all

baseline implementations by a factor of two as the hardware (LARGE) has become much faster. The

space consumption is identical to those reported by Ferragina et al. in their experimental study.

Next we compare the running time and space consumption of Ferragina et al.’s baselines to our

corresponding implementation in SDSL. Note that we do not use any of our proposed improvements

(like popblt or hugepages) to allow for a fair comparison of both implementations. The results are

shown in Table 3.6. Comparing our results to the Pizza&Chili performance shown in Table 3.5,

as expected, the space usage of SSA and FM-HF-V5 are almost the same since the rank structure

only differ by 1.5% in size. The runtime of FM-HF-V5 is slightly faster since the 5% overhead

rank implementation has to scans blocks 66% larger than that of RANK-V5. The space of FM-HF-

R315 is slightly smaller than that of SSA-RRR since we use bit-compressed integer vectors whenever

possible. The time is again faster, since we use our algorithmic optimizations described in Section
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FM-HF-V5 FM-HF-R315 FM-RLMN FM-HF-R363

Time Space Time Space Time Space Time Space
(µs) (%) (µs) (%) (µs) (%) (µs) (%)

200 MB test instance
XML 1.096 70 1.316 32 3.456 34 2.048 17

DNA (P&C) 0.404 29 0.728 28 1.484 79 1.660 24
ENGLISH 0.976 61 1.472 38 2.272 69 2.648 27

PROTEINS 0.872 56 1.604 53 2.128 89 3.228 48
SOURCES 1.208 73 1.688 39 2.460 53 2.820 26

Table 3.6: Space and time performance of four SDSL FM-Index implementations. The experiment
was the same as in Table 3.5. All implementations in this experiment use method poptable for popcnt.

3.4. We get an interesting result for the space of the run-length compressed FM-Indexes. While

our implementation FM-RLMN which uses the compressed bitvector representation is smaller than

RLFM for two test cases (XML, SOURCES) it is larger for the rest. This is caused by the fact that the

Burrow-Wheeler-Transform (BWT) of the latter test cases contains to many runs and so the bitvectors

are too dense to achieve compression using BV-SD. Furthermore the compressed bitvector causes a

slowdown. Unexpectedly, FM-RLMN is two times faster than RLFM on the XML instance.

The last column of Table 3.6 shows the effect of using a better compressed BRRR-K (that is

increasing K) in FM-HF-R3K. As expected, the space significantly reduces for the compressible

texts and the runtime doubles compared to FM-HF-R315. Taking the data from Figure 3.15 (showing

the performance of RRR for increasing K), we could have expected an even greater slowdown as

RRR using K = 63 is substantially slower than RRR using K = 15.

3.6.3 Effects of Our Optimizations

Here we show the effect of applying our environmental features to the performance of our indexes.

We use the same count experiment we used to compare our implementations against the Pizza&Chili

baselines. Additionally, we now apply all of the optimizations discussed in this chapter. Instead of

the slow poptable we now use popblt. We further use HP to minimize the effect of address translation.

Table 3.7 shows the run time performance of our implementations on the large test machine (LARGE)

as well as the speed up in percent (∆t) over the unoptimized implementation.

The runtime of FM-HF-V5 is reduced by about 40% for all test cases when SSE and HP are

activated. This means that our implementation is twice as fast as the highly optimized Pizza&Chili

counterpart. For the DNA (P&C)-instance it is even faster than the suffix array solution which takes
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17 times the space of FM-HF-V5. The effect on the Huffman-shaped wavelet tree-based FM-Indexes

using BRRR-K is not substantial. For both K = 15 and K = 63, decoding the individual blocks

in the compressed representation is the bottleneck, and thus BRRR-K can not be improved by the

applied features. Our second compressed solution FM-RLMN profits mostly from the SSE features

(popblt and selblt) for two reasons: first, the rank operations on the underlying Huffman-shaped

wavelet tree on uncompressed bitvectors is accelerated, and second, the rank queries in BV-SD

which translate to select queries on SEL-C are faster through selblt, see Figure 3.9.

3.6.4 Effects of Our New Bitvector Representations on Index Performance

We specifically evaluate the usefulness of our new bitvector representation (RANK-IL) as well as our

optimizations toH0 compressed bitvectors (BRRR). The Huffman-shaped wavelet tree is parametrised

with the two 25% overhead rank structures RANK-V and RANK-IL. We refer to the resulting in-

dexes as FM-HF-V and FM-HF-1L. We further evaluate FM-Indexes usingH0 compressed bitvectors

(BRRR) using larger block sizes K = 127 and K = 255. We expect that the runtime performance

of these indexes directly correlate with the runtime shown in the evaluation of compressed bitvectors

shown in Figure 3.15 and discussed in Section 3.4. We use test instance sizes of 64 MB and 64 GB

to elucidate the difference between small and large test instances. We use prefixes of WEB-64 GB

and again use the same methodology to get the average query time per character of a count query:

50, 000 patterns of length 20 are extracted from random positions of the corresponding input prior to

the experiment and are then queried.

The results of the experiments are shown in Table 3.8 and Figure 3.19. We first discuss Table 3.8

which shows the run time performance of each index type depending on the data set and different

feature sets. For FM-HF-R3K a performance improvement caused by applying optimizations is only

achieved for the large test instance. Enabling SSE(popblt) for K = 15 results in faster runtime

performance, since a shift and popcnt is used to determine the rank to the right offset, after a block

b′i is decoded by a table lookup. The on-the-fly decoding based solution with K 6= 15 stops decoding

when the offset is reached and therefore do not profit from SSE. All FM-HF-R3K profit from HP,

but the effect decreases as K gets larger and the decoding dominates the runtime. We briefly discuss

possible reasons why HP does not affect the indexes for the small test instance. For the 64 MB the

size of the indexes is at most 30% (see Figure 3.19) of the original bitvector of size 64 MB. Therefore

the page table holding the data structure in-memory is roughly 20 kB large, which fits in L1 cache.

Therefore, a TLB miss can be resolved efficiently via an access to the L1 cache which would explain

why the hugepage feature has almost no effect. FM-RLMN profits from each feature, especially from
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FM-HF-V5 FM-HF-R315 FM-RLMN FM-HF-R363

t (µs) ∆t (%) t (µs) ∆t (%) t (µs) ∆t (%) t (µs) ∆t (%)

200 MB test instance
XML

poptable 1.096 1.316 3.456 2.048
popbw 0.924 −16 1.324 +1 2.600 −25 2.064 +1
popblt 0.764 −30 1.304 −1 1.876 −46 2.036 −1

popblt+HP 0.644 −41 1.140 −13 1.764 −49 1.924 −6

DNA (P&C)
poptable 0.404 0.728 1.484 1.660
popbw 0.348 −14 0.724 −1 1.408 −5 1.652 +0
popblt 0.280 −31 0.716 −2 1.248 −16 1.660 +0

popblt+HP 0.252 −38 0.628 −14 1.356 −9 1.688 +2

ENGLISH
poptable 0.976 1.472 2.272 2.648
popbw 0.832 −15 1.480 +1 2.108 −7 2.644 +0
popblt 0.688 −30 1.472 +0 1.900 −16 2.660 +0

popblt+HP 0.600 −39 1.300 −12 2.200 −3 2.756 +4

PROTEINS
poptable 0.872 1.604 2.128 3.228
popbw 0.752 −14 1.596 +0 1.980 −7 3.264 +1
popblt 0.624 −28 1.560 −3 1.824 −14 3.244 +0

popblt+HP 0.552 −37 1.408 −12 2.100 −1 3.432 +6

SOURCES
poptable 1.208 1.688 2.460 2.820
popbw 1.044 −14 1.680 +0 2.196 −11 2.804 −1
popblt 0.856 −29 1.656 −2 1.996 −19 2.824 +0

popblt+HP 0.744 −38 1.476 −13 2.276 −7 2.652 −6

Table 3.7: Time performance of the our FM-Index implementations of Table 3.6 dependent on the
used popcnt method and the usage of 1 GB pages (HP) to avoid TLB misses running on LARGE.
The time difference is stated as relative difference to the corresponding implementation which uses
method poptable for popcnt.
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FM-HF-R3K FM-RLMN FM-HF-V FM-HF-1L

K = 15 K = 63 K = 127 K = 255
t (µs) t (µs) t (µs) t (µs) t (µs) t (µs) t (µs)

WEB-64M
poptable 1.183 2.085 3.509 13.864 2.362 0.789 0.843
popbw 1.194 2.091 3.482 14.027 1.855 0.684 0.733
popblt 1.182 2.094 3.489 14.019 1.447 0.651 0.590

popblt+HP 1.008 1.991 3.393 13.714 1.316 0.519 0.508
WEB-64G
poptable 3.488 3.675 4.794 17.571 8.237 2.440 2.684
popbw 3.526 3.707 5.621 16.940 6.991 2.244 1.952
popblt 2.945 3.724 4.961 15.756 4.960 2.224 1.700

popblt+HP 1.780 2.796 4.353 15.496 4.177 1.085 0.870

Table 3.8: Mean time t for count of different FM-Index implementations dependent on instance size
of 64 MB and 64 GB while using different sets of features.

replacing the lookup table version for popcnt and select64 to the broadword of SSE versions. Since

FM-RLMN is a rather complex structure the different rank and select sub data structures “compete”

for cache when implemented by lookup tables.

We now we discuss the impact on the FM-Indexes based on the rank structure RANK-V and

RANK-IL for uncompressed bitvectors (FM-HF-V and FM-HF-1L). For the small instance, the dif-

ference between the slowest configuration (poptable) and the fastest is around 40% for both imple-

mentations. For large instances, the effect of hugepages is especially noticeable. Using only popblt in

conjunction with hugepages (HP) is twice as fast as using only popblt. This effect is much larger than

when comparing the basic rank structure itself as shown in Section 3.2, which can be explained as

follows. During the process of backward search the rank operations on the bitvector are performed in

pairs. We first map the start sp of each range 〈sp, ep〉. Next we map the end ep of the same range. The

difference in the positions of the rank call is therefore not random. As the backward search process

continues, the range 〈sp, ep〉 becomes smaller. Therefore, using hugepages, the rank operation of ep

will likely reside inside the same memory page as that of sp. As expected the FM-Index based on

RANK-IL is slower than the RANK-V-based index when no optimization is used, but is faster when

SSE and hugepages are activated. This reflects the outcome for the basic data structure in Figure

3.4. Interestingly, FM-HF-1L using all optimizations (popblt and HP) can perform count on the large

data set at the same cost as the using no optimizations on the small 64 MB data set. Further, note

that the HP feature significantly improves the run time performance of all indexes. In our previous

experiments using the Pizza&Chili corpus this was not visible. This highlights one of the weaknesses
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Figure 3.19: Time and space trade-offs of our index implementations on input instances of size 64 MB
and 64 GB with compression effectiveness baselines using standard compression utilities XZ and
GZIP with option --best.

of the Pizza&Chili corpus. While sizes of 200 MB for the provided data sets was still sufficient for

the time it was created (2008), today evaluation on larger data sets can lead to very different results.

Figure 3.19 shows the different time-space trade-offs achieved by our indexes. It further shows

the effect of our optimizations, as well as comparative compression effectiveness baselines using

standard compression utilities XZ and GZIP. Note that K = 255 was not included as the running

time is too high. Interestingly, the compression effectiveness of FM-HF-R3K= 255 outperforms

GZIP and is within 5% of XZ, the best of-the-shelf compression utility available, while still providing

query functionality in the microsecond range. For the large test instance, even FM-HF-R3K= 127

achieves compression close to that of XZ. For all implementations the “move” on the y-axis shows

the running time improvements when using our optimizations. The difference is very noticeable

for K = 15 for the large data set, but only minor for the small data set as discussed above. The

compressed representation using our optimizations is faster than FM-HF-V using no optimizations.

3.7 Summary and Conclusion

In this chapter we investigated optimizing different aspects of succinct data structures. Specifically,

we investigated the basic building blocks of succinct text indexes. First we evaluated and engineered

common operations rank64 and select64 on computer words. Next we moved one level higher in
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the succinct data structure hierarchy by investigating rank and select on bitvectors. We proposed a

simple cache-friendly rank data structure (RANK-IL) and a faithful implementation of the select struc-

ture of Clark [1996] which adheres to the theoretical bounds of the structure. We further provided a

more space efficient, faster and practical solution (SEL-C) for select data structures on uncompressed

bitvectors as well as an improved compressed bitvector representation.

We empirically demonstrated that our proposed improvements outperform existing implementa-

tions. Our experiments further explored the behaviour of rank and select data structures for binary

and general sequences in different scenarios. In our experiments, we varied data size, implementa-

tion, used instruction sets and operation system features. Overall we provided, to our knowledge, the

fastest FM-Index (FM-HF-1L using popblt and HP) and the smallest FM-Index (FM-HF-R3K= 255)

with compression effectiveness close to that of the state-of-the-art compressor XZ while still provid-

ing query functionality in the microsecond range.

We further discovered that the performance of the basic succinct data structures rank and select

can be increased by using advance CPU instructions – the built-in popcnt operation and our new

suggested select routine – and the hugepage feature. We have demonstrated that these improve-

ments propagate directly to more complex succinct data structures like FM-Indexes. Especially the

hugepage feature was not yet explored in literature on succinct data structures and string processing.

This is surprising as it seems natural to do so, since succinct data structures usually have memory

access patterns which cause many TLB and cache misses.

We think that exploiting the hugepage feature as well as creating more cache-efficient succinct

data structures is an important step to making succinct structures perform efficiently on larger data

sets. One of the main problems when processing large data sets is locality of access. For small data

sets, large parts of a succinct data structure can reside close to the CPU in various levels of the cache

hierarchy. As the data size increases, this is no longer the case which could clearly be observed in our

empirical evaluation. Both the hugepage feature as well as cache-efficient data structure layouts and

access can mitigate the problem of performing many random, uncached, accesses to main memory.

Exploring these features is an important aspects in providing efficient succinct data structures which

perform well on both small and large data sets to the extent where they are competitive against

classical uncompressed structures in more scenarios.



Chapter 4

Revisiting Context-Bound Text
Transformations

The BWT is one of the main components of many compression systems and succinct text indexes.

The transform produces a permutation of a string T of size n, denoted T bwt, by sorting the n cyclic

rotations of T into full lexicographical order and taking the last column of the resulting n × n ma-

trix M to be T bwt. Since the transform was introduced in 1994, many empirical evaluations and

theoretical investigations have followed [Fenwick, 1996; Manzini, 2001].

Most BWT-based compression systems and succinct text indexes fully sort the cyclic rotations

of T , and nearly all current empirical studies of both compression systems and succinct text indexes

assume a full sorting of rotations. However, a full sorting of the rotations is resource intensive.

The construction of the fully sorted BWT is generally performed by construction the suffix array

(SA) over T . In-memory suffix array construction can be performed efficiently, but requires up to

n + n log n bits of space in available main memory [Puglisi et al., 2007]. In practice, the fastest

construction algorithms uses 9 times the space of the original text during construction [Puglisi et al.,

2007]. More space efficient algorithms exist which however are much slower in practice [Ferragina

et al., 2012]. This is especially problematic for suffix-based succinct text indexes. Succinct text

indexes can provide search over a text T in space roughly equal to compressed representation of T .

Thus, full text indexes require much less space during operation when compared to the construction

cost where constructing the full BWT is the main resource constraint. Expensive construction of the

BWT therefore prohibits the use of succinct full indexes on large text sequences which in turn has

undeniably hampered the adoption of succinct text indexes in practice.

In independent work, Schindler [1997] and Yokoo [1999] described an alternative approach in
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which the n rotations are only partially sorted to a fixed prefix depth, k. This modified transform

is referred to as the k-BWT. By limiting the sort depth to k, sorting can be accomplished in O(nk)

time using radix sort, and is very fast in practice. Moreover, Schindler reported nearly identical

compression effectiveness to the full transform, even for small values of k. The algorithm developed

by Schindler [1997] was subsequently made available in the general purpose compression tool SZIP.

Interestingly, the research community has not given much attention to the k-BWT. In this chapter

we revisit the k-BWT. Our contributions and the structure of this chapter can be summarized as

follows:

1. We provide a formal definition of the k-BWT and its auxiliary structures and algorithms in

Section 4.1.

2. Our second major contribution in this chapter is a fast, efficient external memory k-BWT con-

struction algorithm which outperforms all existing full suffix array construction algorithms in

Section 4.2. This allows the construction of the k-BWT for data sets much larger than those that

are commonly indexed using traditional, BWT based, succinct text indexes.

3. We conduct an extensive evaluation of existing in-memory k-BWT construction algorithms

in Section 4.1.2. We further discuss problems with adopting popular induced suffix sorting

techniques to constructing the k-BWT.

4. Our next contribution is a new linear-time k-BWT reversal algorithm which explicitly stores in-

formation required to reverse the transform instead of recovering it during the reversal process.

We analyse the time and space trade-offs of our new algorithm and compare it to the normal

BWT and k-BWT reversal algorithms. We find that algorithms performing well in theory are

outperformed by more inefficient algorithms in practice.

5. We further investigate a previously undocumented locality of access property inherent to all

k-BWT reversal algorithms in Section 4.3.4. This locality allows fast transform reversal for

small k.

6. Our last contribution is the first thorough empirical analysis of state-of-the-art k-BWT algo-

rithms for the forward and inverse transforms, compression effectiveness, and associated trade-

offs in Section 4.4.
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4.1 Forward Context-Bound Text Transformations

In this section the forward k-BWT transform is discussed. We formally introduce the forward k-BWT

and evaluate the efficiency of different forward transform algorithms.

4.1.1 The Regular Burrows-Wheeler Transform

The BWT is a popular text transformation used in many compression systems and succinct text in-

dexes. A text T of size n is permuted using the transform by sorting all suffixes of T in lexicographi-

cal order. This can be viewed as sorting conceptual matrixM of size n× n. The output of the trans-

form corresponds to the last column (L) ofMwhereL[i] =M[n−1][i] for 0 ≤ i < n. This is shown

in Figure 4.1 (left) where, for the input text T =chacarachaca$, T bwt =achhrcaa$acca. The

regular BWT transform is described in detail in Section 2.4.1.

4.1.2 The Context-Bound Burrows-Wheeler Transform

When constructing the BWT via suffix array construction, one of the main problem is the worst case

O(n) cost of a single suffix comparison. Independently, Schindler [1997] and Yokoo [1999] propose

to limit the number of characters to be compared during a single suffix comparison to at most k. This

implies that the matrix M is only sorted up to depth k. The partially sorted matrix is referred to

as Mk. The context based on which the symbols in the transform are ordered by is therefore also

bound by k. This partial ordering is referred to as a k-ordering of rotations into k-order, and to the

process itself as a k-sort. If two or more rotations are equal under k-order, they fall into the same

context group or k-group and are said to be k-equal. Within a k-group all k-equal suffixes appear in

text-order and are therefore stably sorted. The output of the transform of an input T is referred to as

T kbwt. The sorted matrixMk can be partitioned into context groups. The context group containing

the i-th largest prefix of length k is denoted as Ci. All context groups are strictly lexicographically

ordered where Ci−1 < Ci < Ci+1. In the practical examples in this section a specific k-group is

referred to as Cabc. Within Cabc all rows are prefixed by abc. There are at most n context groups in

Mk. In this case,Mk is equal toM and therefore the k-BWT is equal to the BWT. This is however

only guaranteed for k = n. An example of the k-BWT is shown in Figure 4.1 (right) for k = 2.
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(1)M – BWT LFk Dk (2)Mk – k-BWT

Figure 4.1: Comparison of regular BWT and context-bound BWT for k = 2 for the input text
chacarachaca$. The full BWT (left) is sorted completely whereas the k-BWT is only sorted up to
a depth of 2. Rows with the same k = 2 long prefix are grouped together in context groups which are
marked by the bitvector Dk. The LF mapping needed to recover T from T kbwt is shown as LFk and
T kbwt =achrhcaa$acca.

The context group boundaries can be can be marked in a bitvector Dk of length n. The bitvector is

formally defined as follows:

Definition 7 For any 0 ≤ k < n, let Dk[0, n − 1] be a bitvector, such that Dk[0] = 1 and, for

1 ≤ i < n,

Dk[i] =

{
0 ifMk[i][0, k − 1] =Mk[i− 1][0, k − 1] ,

1 ifMk[i][0, k − 1] 6=Mk[i− 1][0, k − 1] .

For our example shown in Figure 4.1, Dk is 1110011010101. So, Dk[i] = 1 if the rotations at rows i

and i− 1 inMk are in different k-groups, and Dk[i] = 0 if they belong to the same k-group. Thus,

a k-group containing v + 1 members is indicated by a substring 10v in Dk.

The difference between the BWT and the k-BWT for the input text chacarachaca$ for k = 2

is shown in Figure 4.1. Note that the difference between the k-BWT output and the full BWT output

is minor. The only difference between both transforms occurs in context groups larger than one.

Even for small k of around 10, the output is very similar for most input texts which results in similar
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compression effectiveness when replacing the BWT with the k-BWT [Schindler, 1997]. Compression

trade-offs of the k-BWT are explored in detail in Section 4.4.

4.1.3 Engineering In-memory k-BWT Construction

Next, engineering an efficient forward k-BWT transform is discussed. First, traditional radix sort and

multi-key quicksort schemes are investigated and modified to construct the k-BWT. Then the problem

with using popular induced suffix sorting techniques for constructing the k-BWT is investigated. Last,

we perform an experimental evaluation of the different forward transforms.

Radixsort-Based k-BWT Construction

The most straightforward way to perform k-BWT construction is radixsort. Schindler [1997] provides

the compression tool SZIP. It uses a specialized radix sort implementation which uses counting sort to

compute the k = 2 sorting order before switching to regular a radix sort at a total cost ofO(kn) time.

This requires 2σ log n bits of extra space to perform counting sort. Kärkkäinen and Rantala [2008]

propose three cache-efficient radixsort-based string sorting algorithms. The most efficient method

(CE2-S) method uses 2σ log n + n log σ + n log n bits of extra space. We refer to this method as

RDX-CACHE.

Multi-Key Quicksort Construction

Another common string sorting algorithm is the multi-key quicksort [Bentley and Sedgewick, 1997].

Multi-key quicksort combines quicksort and radixsort to sort strings consisting of multiple characters.

The algorithm partitions the strings at the current sorting level, d, into three partitions: smaller, equal

or larger than the pivot character. Each partition is processed recursively. For all symbols equal to

the pivot character the sorting depth is increased to d + 1. For the two other partitions a new pivot

element at the same depth d is chosen. This algorithm can be trivially adapted to construct the k-

BWT as follows. First, the maximum recursion depth is limited to k. Second, for partitions of size

larger than one which are sorted up to depth k, additional work is required. Each of the fully sorted

partitions is a context group. Quicksort is not stable. Therefore, each “final” context group is further

sorted based on the integer values of the suffix positions. This ensures that within a context group,

all suffix positions are stored in their initial text order. This algorithm is referred to as MK-QSORT.
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Induced Suffix Sorting-Based Construction

Using induced sorting, as little as 30% of the suffixes must be sorted to obtain the final suffix array and

the resulting T bwt [Maniscalco and Puglisi, 2006]. Algorithms using induced suffix sorting perform

very well in practice despite having a non-optimal worst case time complexity. The main idea behind

induced sorting is as follows. First all text positions are classified into different types. Itoh and

Tanaka [1999] classify the positions into two types whereas only the suffixes of one of the type have

to be sorted explicitly. The correct position of all suffixes of the remaining type can be induced by

performing one pass over the partially sorted suffix array. The algorithm sorts around 50% of the

suffixes explicitly and induces the order of the remaining suffixes.

Itoh and Tanaka [1999] partition all suffixes in T into two types, A and B, by comparing any two

prefixes of two adjacent suffixes T :

T [i] =

Type A if T [i] > T [i+ 1] ,

Type B if T [i] ≤ T [i+ 1] .

Each individual type B suffix Si is then assigned a bucket in SA according to the first character

T [i]. All type B buckets are then sorted into the correct lexicographical order. One pass is then

performed to induce the remaining unsorted A type suffixes. This process is shown in Figure 4.2.

Unfortunately this technique cannot easily be adopted to constructing the k-deep suffix array SAk

and therefore the k-BWT. The main problem is the induction step described above. When inducing

the order of the type A suffixes in the last step, each “induction” step increases the sorting order by

one. Therefore, inducing the sorting order of a position SA[i] from a position sorted up to a depth of k

will result in SA[i] being sorted up to depth k+ 1. To enable performing induced sorting to construct

SAk and the k-BWT we enhance the initial algorithm of Itoh and Tanaka [1999] to be context aware.

When sorting a B-type bucket to depth k, the context group boundaries Dk within the bucket are

implicitly determined. From the definition of types A and B it can be deduced that, for a given

symbol c, all types A and B suffixes are in different context groups as T [i] > T [i+ 1] for type A and

T [i] ≤ T [i+ 1] for type B. To induce a k context group the “source” context therefore is required to

be k − 1 sorted. This is shown in Figure 4.3. A context group Chab is not induced from the k = 3

contexts Caba to Cabd but from the larger context group Cab with depth k = 2.

The algorithm of Itoh and Tanaka [1999] is modified to be context aware as follows. During the

induction step the partially sorted suffix array is processed on a context by context basis. Initially all

B types blocks are sorted to depth k − 1 with which the correct k sorting order of all suffix array
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# = 0 1 2 3 4 5 6 7 8 9 10 11 12

T = c h a c a r a c h a c a $

type = B A B A B A B B A B A A B

# = 0 1 2 3 4 5 6 7 8 9 10 11 12

buckets $ a a a a a c c c c h h r

type = B A B B B B A A B B A A A

sort B 12 2 9 6 4 7 0

induce 12 11 2 9 6 4 10 3 7 0 8 1 5

1)

2)
3)

Figure 4.2: Induced sorting for T =chacarachaca$ of Itoh and Tanaka [1999] in three steps:
First determine all type B suffixes. Second sort all type B buckets and finally induce all type A
suffixes.

positions from a type B suffix can be induced. In the last step the sorting depth of the B type buckets

is increased from k − 1 to k. Inducing from a type A position is more complex. Suppose the context

group Chab is of type A and was induced from a type B context group Cab. However, Chab is also

part of a larger k = 2 group Cha. Therefore, each time a type A position is induced from another

type A suffix the sort order increases. Further, note that this case can easily be detected during the

first scan of T where the suffix type of each text position is determined. Two adjacent type A suffixes

in T implies that one of the positions will be induced from a type A suffix during the induction step.

We therefore mark these positions during the first pass over T . During the induction step, if within

a type A bucket, multiple positions in the same “target” context group are induced we again mark

this context group. In a last pass the marked context groups are restored to return the correct k-order.

This method is referred to as INDUCE-K.

Empirical Evaluation

Next the performance of the in-memory forward transform algorithms is evaluated. The running time

of the different algorithms is compared to the fastest in-memory suffix array construction algorithm

DIVSUFSORT maintained by Yuta Mori.1 The performance of our different methods discussed above
1available at https://code.google.com/p/libdivsufsort/
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Figure 4.3: Context aware induction step where the context Chab is induced from the sorting order of
context Cab instead of the k = 3 context groups.

is evaluated using the 200 MB test cases of the Pizza&Chili corpus (see Section 2.7.3) as well as a

200 MB prefix (WSJ) of the of the Wall Street Journal extracted from the Disk 2 of the TREC data

collection. The results are shown in Figure 4.4.

Overall, MK-QSORT is not competitive and only outperforms DIVSUFSORT for small k on the

DNA data set. For all other test cases and k values it is slower. This can be explained by the amount

of work performed by the algorithm. First the context groups are sorted into k-order. Next, each

context group larger than one is additionally sorted to ensure all suffix positions within the group are

in ascending order. This cannot be performed during the first sorting step as quicksort is inherently

not stable. Thus, for small sorting depths, essentially two sorting stages are performed which affects

the run time performance of the overall algorithm. The induced suffix sorting method is faster than

DIVSUFSORT for small k for all test cases. For larger k, DIVSUFSORT outperforms the induced-

based method which requires more “bookkeeping” of context boundaries during the induction step

as k becomes larger. The additional steps required to ensure the correct k ordering do not justify

the use of induced suffix sorting as cache efficient radixsort-based algorithms always perform better

than INDUCE-K. The cache-efficient radix sort, RDX-CACHE, performs best for all test cases. For

small sorting depths, it is roughly four times faster than DIVSUFSORT. As k becomes larger, it slowly

approaches the running time of DIVSUFSORT. Still, for all test cases and different k it is faster than

DIVSUFSORT and all other methods. Only for SOURCES and k = 10, DIVSUFSORT is as fast as

RDX-CACHE. We further experimented with a combination of “super alphabets” and a fast SSE-based

string comparison function in conjunction with RDX-CACHE and all other methods but could not

find any significant improvements in the running time of the algorithms. Note that the running time
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|Σ| Size LCPmean LCPmax LCPmedian H0

WSJ 89 50 16 1,344 12 4.62
DNA 4 50 31 14,836 13 1.98
XML 96 50 42 1,005 30 5.23

SOURCES 227 50 168 71,651 15 5.53
WEB-3 GB 126 3072 6011 55,6673 120 5.35
DNA-3 GB 8 3072 223860 21,049,999 15 2.12

Table 4.1: Statistical properties of the k-BWT benchmark collection.

of DIVSUFSORT should not be affected by k. In our experiments we reran constructing the full BWT

using DIVSUFSORT every time we measure the data points for the k-BWT methods. Therefore, a small

discrepancy in the expected “constant” running time for different k can be observed in Figure 4.4.

Interestingly, the SOURCES file can be constructed much faster using DIVSUFSORT than the other test

files, whereas the k-BWT-based methods are not much faster for this test case compared to the other

test cases.

This can be explained as follows. Consider the statistical properties of our test collection in

Table 4.1. The mean and max lcp values of the SOURCES collection are much higher than for all other

test cases. However, the median lcp value (LCPmedian) is similar. This implies that there are several

suffix positions which have to be sorted to a high depth. Not having to perform these expensive suffix

comparisons is therefore beneficial to the overall running time of an algorithm. DIVSUFSORT uses

induced suffix sorting methods which sort only 35% of all suffix positions. Thus less expensive suffix

comparisons are performed for the SOURCES test case. Therefore, algorithms sorting only a small

number of these suffixes (DIVSUFSORT) performs especially well on the SOURCES test file.

In conclusion, for all files with k < 8, the k-BWT transform can be constructed faster than the

BWT. For k < 5 the k-BWT transform can be constructed twice as fast. The k-BWT sorts the initial

matrixMk up to a depth of k, but the BWT must sort the matrix fully. Even though the construction of

the transform is performed using fast suffix array construction algorithms, we still expect the k-BWT

transform to be more efficient as the average number of character comparisons required to compare

two individual suffixes when constructing the full BWT tends to be significantly larger than k.
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Figure 4.4: In-memory k-BWT forward transform efficiency for the 200 MB Pizza&Chili test files for
variable k.
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T

(1) T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

(2) C0 Cx Cy C1 Cx Cy Cx Cw Cz C4 Ci Cx C2 Cj Cy C0 Ca Cc C3 Ca Cy C4 Cx Cy C7 Cu Cw

γ-way merge γ-way merge γ-way merge

(3) C0 C1 · · · Cw Cx Cy Cz C0 C2 C4 · · · Ca Cc Ci Cx Cy C3 C4 C7 · · · Ca Cu Cw Cx Cy

γ-way merge

(4) SAk

Figure 4.5: External k-BWT construction of a text T using four steps. (1) Split up T into chunks T i of
size kblock and construct SAk(Ti) in-memory. (2-3) merge kblock blocks at the same time to create
the final SAk.

4.2 External Memory-Based k-BWT Construction

Next we propose a simple but efficient external memory construction algorithm for the k-BWT. First

the algorithm is described in detail. Next the algorithm is empirically compared to state-of-the-art

external full BWT construction algorithms.

Algorithm Description

First split the initial text T into blocks T i of size kblock. For each block the suffix array of depth k,

SAk, is constructed and written to disk. After all blocks are processed, a γ-way merge of γ blocks at

a time is performed. The merging phase is repeated until only one block comprising of the complete

suffix array SAk remains from which the k-BWT can be extracted. This is shown in Figure 4.5.

Merging two blocks is performed as follows. Each block is composed of several context groups

as shown in Figure 4.5. Therefore merging blocks is performed on a context group basis. Merging

the individual context group can be performed efficiently. Individual context groups Cabc are lexico-

graphically ordered across the initial text blocks T i. Therefore, Cabc in block T 0 is lexicographically

smaller than Cabd in T 1. If a context group Cabc occurs in multiple blocks T x and T y, merging Cabc

can be performed by concatenating Cabc of T y to Cabc of T x. Inside a context group Cabc, all suffix

positions are stored in their initial text order. All suffix positions of Cabc of T x are guaranteed to be

lexicographically smaller than the positions of Cabc in T y. This is shown in Figure 4.6.

The initial SAk for the initial blocks of text T is created at a total cost of O(nk) time. The
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· · · Cabc · · · · · · Cabc · · ·

5 7 23 35 83 91 101 123 423 512 529

merge context groups

· · · Cabc · · ·

5 7 23 35 83 91 101 123 423 512 529

Figure 4.6: Context group merge phase of the external k-BWT algorithm. (1) The context group
Cabc occurs in two blocks and is merged by concatenating the suffixes stored in the right block to the
suffixes in the left block.

text is split into n′ = n/kblock blocks where kblock is the size of the initial text blocks T i. Next,

logγ(n′) merge phases are performed to create the final SAk and the k-BWT. In the worst case each

context group is of size 1. This implies that the k-BWT is equal to the regular BWT. In this case, no

“merging” of two context groups occurs as each context group occurs only once in T . However, we

conjecture that for small k, individual context groups will be large on average, which in turn allows

fast construction using our simple γ-way context group merge construction algorithm.

Empirical Evaluation

Next an implementation of our γ-way context group merge algorithm is compared to state-of-the-art

external full BWT algorithms. Our approach is compared to the following suffix array construction

algorithms: (1) ESAIS 2 proposed by Bingmann et al. [2013] (2) BWTDISK3 proposed by Ferragina

et al. [2010]. The machine DESKTOP described in Section 2.7.1 is used in this experiment. The main

memory of the machine is further restricted to to 1 GB via the grub bootloader option mem=1024m.

First our approach is compared to the two external construction baselines: ESAIS and BWTDISK.

The full SA and the full BWT are built with both external memory algorithms, and the running time

is compared to that of our construction algorithm for k = 2, 4, 6, 8, 10 for two data sets: WEB-3 GB

and DNA-3 GB using only 1 GB main memory. In this experiment the initial block size is set to

kblock = 100 MB. Due to the long running time of the experiment we only perform each experiment

three times and report the mean running time. Varying branching factors γ = 2, 4, 16, 32, 64 are used
2available at http://panthema.net/2012/
3available at http://people.unipmn.it/manzini/bwtdisk/
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Figure 4.7: External k-BWT construction using different branching factors for WEB-3 GB and DNA-
3 GB. Time is shown in seconds per megabyte of input data to take into account the cost of disk
I/O.

for our new construction algorithm. The results of the experiment are shown in Figure 4.7. The

time in seconds normalized by the input text size for different k is shown on the y-axis. The k-

BWT can be constructed faster than the full BWT with both external memory algorithms. The k-BWT

construction is roughly 4 times faster than the fastest BWT external construction algorithm. When

comparing to the full BWT construction algorithms, the sorting depth k does not significantly affect

the performance of our algorithms. While the algorithm is faster for small k, it remains constant for

k = 8, 10. This will however change as we further increase k as the number of possible context

groups grows exponentially (|Σ|k) in the worst case. The branching factor affects the running time

of our algorithm. We split each file into n′ = 3072/100 = 31 blocks. For γ = 2, we perform

log2(31) = 5 merge phases. For γ = 4 we only perform 3 merge phases. For all other branching

factors we only perform one merge phase. Surprisingly, the “older” BWTDISK algorithm outperforms

the more recent external suffix array construction algorithm ESAIS. Figure 4.8 shows additional

results only using γ = 16 and kblock = 100 MB but larger values of k. Here the sorting depth

for which the BWT can be constructed more efficiently than the k-BWT is shown for both data sets.

For DNA-3 GB, BWTDISK begins to outperform external k-BWT construction between k = 16 and

32. ESAIS only outperforms the k-BWT construction algorithm for k larger than 64. For the WEB-

3 GB data set, k-BWT construction is faster than both BWT construction methods up to k = 64.
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Figure 4.8: Extern k-BWT construction for larger values of k for WEB-3 GB and DNA-3 GB using
γ = 16 and kblock = 100 MB showing the trade-off where BWT construction in external memory
outperforms external k-BWT construction.

The disparity between the performance for the different data sets can be explained by the number

of context for larger values of k. Consider the properties of the DNA-3 GB and WEB-3 GB data

sets in Table 4.1. The median sorting depth required (LCPmedian) to create context groups of size

one for DNA-3 GB is approximately 15. Therefore, for sorting depths larger than 30, the k-BWT

closely resembles the BWT, and can no longer be constructed more efficiently using the external

k-BWT construction algorithm. However, the median sorting depths of WEB-3 GB is much larger.

Therefore, as shown in Figure 4.8, constructing the k-BWT for large values of k can be performed

efficiently for WEB-3 GB as there are exist still large context groups which can be merged efficiently

using our algorithm.

Next the running time of our algorithms is evaluated for increasing input sizes. The k-BWT is

constructed for input prefixes from 1 GB to 10 GB of the WEB data set for k = 2, 4, 6, 8, 10. This

experiment uses the initial block size of kblock = 100 MB and the branching factor of γ = 16 during

the merging phase. Figure 4.9 shows the results of the experiment. For WEB-1 GB and WEB-2 GB

the running time is similar for all k. As the input size increases, the difference between the running

time for the different sorting depths increases. This is caused by the increasing number of context

groups for larger k. More context groups impose an additional merging cost, which outweighs the ad-

ditional time required to perform the initial k-sort. Overall the running time increases linearly with the
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Figure 4.9: External k-BWT construction cost of the WEB data set for prefixes of size 1 GB to 10 GB
and k = 2, 4, 6, 8. In this experiment we use kblock = 100 MB and γ = 16.

size of the input data for all sorting depths measured. This will change as the number of merge phases

increases, where we expect to see a significant decrease in run time performance. For an input text

of size 25700 MB and an initial block size of kblock = 100 MB, a total of logγ=16(25700/100) = 3

merge phases would be performed instead of two for all smaller inputs.

The k-BWT can be efficiently constructed using a simple external γ-way merge algorithm. The

k-BWT can be constructed for large inputs using only a fixed amount of memory. The construction

cost increases as the sorting depth increases due to the increasing number of context groups. Un-

fortunately, as k increases, the number of context groups is not bound and, in the worst case, our

algorithm would merge context groups of size 1. This is however not the case in practice where our

algorithm outperforms state-of-the-art external BWT and suffix array construction algorithms by a

factor of four.

4.3 Reversing Context-Bound Text Transformations

In this section we discuss the reverse k-BWT transform. Reversing the regular BWT transform is

briefly revisited to refresh the notation used throughout this section. Next the reverse k-BWT trans-

form is formally introduced. Last the efficiency of different aspects of the k-BWT reversal algorithms

is empirically evaluated.
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4.3.1 Reversing the Regular Burrows-Wheeler Transform

The BWT can be reversed in linear time without the need to store any additional information. Con-

ceptually, this is done by partially reconstructingM from T bwt. First, the first column (F ) inM is

recovered by performing counting sort on T bwt, which represents the last column (L) inM, in linear

time. Thus T bwt = L[0]L[1]...L[n]. To reverse the transform the position I , which corresponds to

the row inM where the original string T appears, is also stored. Let LF be the mapping of each sym-

bol in L to its corresponding position in F forM. If row j ofM contains rotation i then function

PRED(j) returns the row containing rotation i − 1. Observe that the rows ofM in Figure 4.1 (left)

– up to the $ symbol on each row – are in fact the suffixes of T in lexicographical order. Note the

following important properties ofM that are necessary for the reverse transform:

1. Given the ith row ofM, the last character L[i] precedes the first character F [i] in the original

text. So, T = . . . L[i]F [i] . . ..

2. Let c = L[i] and let ri be the frequency of symbol c in L[0..i− 1]. IfM[j] is the ri th row of

M, starting with c, then the symbol corresponding to L[i] in the first column is located at F [j].

As such, L[i] and F [j] correspond to the same symbol in the input string T since F and L are

both sorted by the text following the symbol occurrences.

The BWT algorithm is reversible using the following procedure, which produces the original string T

in reverse order.

1. Count the number of occurrences of each symbol in T bwt and compute an arrayQ[0..|Σ|], such

thatQ[c] stores the number of occurrences of symbols {$, 1, .., σ−1} in T bwt (and equivalently

T ). The count Q[c] + 1 gives the first occurrence of the symbol c in F .

2. Next, construct the LF mapping, LF[0..n], by making a pass over T bwt and setting LF[i] =

Q[L[i]] + OCC(L,L[i], i), where the function OCC(A, b, i) returns the number of occurrences

of symbol b in string A[0..i− 1]. The mapping LF precisely defines the PRED function.

3. Reconstruct T backwards as follows: set s = I and for each i ∈ n− 1 . . . 0 do T [i]← T bwt[s]

and s← LF[s].

4.3.2 Reversing the k-BWT

The key difference between reversing the full and partial transforms is the ease of implementing the

PRED function. ForM and the full BWT, PRED(i) is easily derived from LF[i]. Let LFk be the k-

BWT equivalent last to first column mapping forMk. While LF[i] represents PRED(i) for the regular
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BWT, LFk does not necessarily represent PRED. The mapping LF[i] returns the position inM of the

rotation j =M[i]−1 in the fully sorted BWT, which is also the row containing the rotation preceding

shiftM[i]− 1. Unfortunately, LFk[i] provides no such guarantee for the predecessor. It only points

to a row with a rotation that shares the same k-prefix as the true predecessor, or all rows k-equal to

the true predecessor. For example, consider LFk[10] = 8 in Figure 4.1. Observe that row 8 is not the

predecessor of rotation 10 – the actual predecessor is 9. However, rows 8 and 9 do share a common

prefix ch of length k = 2. Using only LFk would recover the text “$chaca$chaca$” instead

of “chacarachaca$”. During the reconstruction of T from T kbwt, using LFk, the character $ is

processed first instead of the correct choice a as LFk only points to the preceding context and not the

correct preceding character or row.

Nevertheless, LFk can be used to properly simulate PRED as in LF. However, the boundaries of

the k-groups inMk previously defined (see Definition 7) as the bitvector Dk are also required in the

process. This method was originally described by Schindler [1997]. For now, we assume the context

group boundaries (Dk) are available before reconstruction without loss of generality.

Recall that the rotations are defined to be in ascending order (due to the stability of the sorting

process) within each k-group. During reversal, the rows in a given k-group must be visited last to

first, by virtue of the fact that the string is recovered from the last character to the first. The complete

reversal algorithm for k-BWT is shown below:

1 reverseKBWT(T kbwt,I,n) {

2 j = I

3 for i = n− 1 to 0 do {

4 T [i] = T kbwt[j]

5 g ← GROUP(j)

6 j ← PRED(j) ≡ g − GROUPPOS[g]

7 GROUPPOS[g] = GROUPPOS[g] + 1

8 }

9 return T

10 }

As previously discussed, LFk cannot be used to implement the PRED function directly as LFk[j]

only guarantees to point to a symbol in the same k-group. So, the correct predecessor must be derived

from the current k-group. Therefore, the preceding k-group g (g = GROUP(j)) is located. Then,

the correct preceding character j within the k-group is determined by maintaining the count of all
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of the previously decoded characters within g (GROUPPOS(g)). All known methods for reversing

the k-BWT use a variation of this general procedure. The methods only differ in how the k-group

boundaries (the Dk vector) are reconstructed prior to recovering T from T kbwt.

4.3.3 Recovering the k-group Boundaries

Here a variation of the simple O(nk) algorithm of Schindler [1997] to recover Dk from T kbwt is

described. First recover the k = 1 context group boundaries (D1) from T kbwt by performing count

sort. From D1 the context bounds for sorting depth k = 2 (D2) can recovered as follows. With each

pass over T kbwt, the sorting depth is increased by one. Each context group Ci in D1 is processed as

follows: While processing Ci, the first occurrence of each symbol c is recorded. Consider processing

the context group Ca the running example (see Figure 4.1). In row 1 inMk symbol T kbwt[1] = c

occurs for the first time in Ca. This implies that there is a k = 2 context group Cca. Therefore,

D2[6] = 1 is set to one as the start of all c contexts begins in row 6 and T kbwt[1] is the first time

symbol c is encountered within Ca. This implies that the first context of order two in Mk is Cca.

The second time symbol c occurs in Ca is in row 5 as T kbwt[5] = c. Therefore, the context Cca is of

length two and D2[7] = 0. By performing k passes over T kbwt the k-deep context boundaries (Dk)

can be recovered in O(nk) time. A formal description of the algorithm is shown below:

1 recoverDk(T kbwt,n) {

2 Q[0 . . . σ − 1] = CumCounts(T kbwt,n) , D1 = ExtractBounds(Q)

3 for j = 2 to k do {

4 CT [0 . . . σ − 1] = Q[0 . . . σ − 1]

5 LastSeen[0 . . . σ − 1] = −1

6 for i = 0 to n− 1 do {

7 if Dj−1[i] == 1

8 ctxstart = i

9 if LastSeen[T kbwt[i]] < ctxstart

10 Dj [CT [T kbwt[i]]] = 0

11 else

12 Dj [CT [T kbwt[i]]] = 1

13 CT [T kbwt[i]]] = CT [T kbwt[i]] + 1

14 LastSeen[T kbwt[i]] = i

15 }

16 }

17 return Dk

18 }
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Figure 4.10: Context reconstruction time in seconds for the DNA data set for variable k for all k-BWT

algorithms (left) and as a percentage of the total reconstruction time (right).

Recently, Nong and Zhang [2007] described an asymptotically more efficient method for com-

puting Dk which requires O(n log k) time. The key observation made by Nong and Zhang is that a

k-order context is composed of two (k/2)-order contexts. Due to the cyclic properties inherent to the

permutation matrix, the (k/2)-order context positions can be extracted from the previous iteration.

Using a dynamic programming approach, the algorithm uses Di/2 to produce Di, where i ≤ k, to

recover Dk in O(n log k) time. Nong et al. [2008] also propose an algorithm to reduce the time for

recovering the k-order contexts to O(n) by computing the lengths of longest-common-prefixes (lcp)

for each adjacent row inMk. The k-order contexts can then be retrieved by simply traversing the list

of lcp values and marking a k-order context boundary each time lcp ≥ k. Figure 4.10 compares only

the cost of context reconstruction for each of these algorithms. The left subfigure shows the aggre-

gate time for reconstruction and the right subfigure shows the percentage of total runtime consumed

during context reconstruction for DNA. Note the superior performance of the O(nk) algorithm for

even moderate values of k. For k = 100, the O(n log k) algorithm is still more than twice as fast

as the linear variant. The constant factors of O(n) algorithm are not overcome until k is very large.

This is further evaluated empirically in Table 4.2.

The context reconstruction time is independent of the text input, unlike the compression effec-

tiveness and inverse transform efficiency. As shown in Figure 4.10 (right), context reconstruction

time using the fastest practical O(nk) algorithm is still a significant contributor to the overall time

complexity of k-BWT inversion. As can be observed in Figure 4.10, while the total cost of recovering
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the context bounds for the O(nk) algorithm increases (left), the percentage of the total recovery cost

decreases for k > 7. This implies that the actual cost of recovering T from T kbwt usingDk decreases

for larger k. Upon further investigation we discovered a cache effect during the actual reversal pro-

cedure of the k-BWT. This cache effect is shown in Figure 4.13 and will be discussed in more detail

in Section 4.3.4. Overall, the reconstruction of the context boundaries contributes up to 40% to the

total running time of reconstructing T from T kbwt. Thus, methods which can alleviate this cost merit

further consideration.

Consequently, storing the contexts explicitly instead of computing the bounds during the reverse

transform is a sensible space-time trade-off to consider. For small k, the number of distinct contexts

is small, and, can thus be stored efficiently. The contexts can be represented naively as a bitvector

of size n bits, but the vector is sparse for small values of k, making the context information more

compressible. A pragmatic choice to explicitly encode the context group boundaries is compressed d-

gap encoding. It is used to store the one bit positions inDk explicitly, as the method is highly effective

when the number of contexts is much smaller than n [Culpepper and Moffat, 2005]. Furthermore, the

sequential decoding limitation imposed by d-gap encoding is not problematic since random access

to the context vector during reconstruction is not required. The additional cost, measured in loss of

entropy as a result of having to store additional information, to explicitly store the contexts relative to

the cost of reconstructing the context information using theO(nk) reconstruction algorithm is shown

in Figure 4.11. For WSJ, XML and SOURCES, the cost of storing context information is negligible

for k < 6. Context information for the DNA collection can be stored effectively for k < 10. Overall,

there is no significant loss in compression effectiveness for moderate values of k.

Another important dimension to consider is the working space required by the inversion process.

Table 4.2 shows the time and space requirements with constant factors, for all context reconstruction

algorithms, including our explicit storage algorithm. The empirical space usage is estimated using

the program MEMUSAGE available from the PIZZA & CHILI CORPUS website. The O(n log k) and

O(n) algorithms require up to five times more space than theO(nk) algorithm to recover the original

text. This space is further reduced by eliminating the context reconstruction entirely, such as is done

by our explicit context boundary encoding algorithm. Our algorithm requires only 5n space and can

be inverted in O(n) time, but is only preferable when k is small as the cost of storing Dk increases

with k.
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Figure 4.11: Entropy loss resulting from explicitly storing the contexts with d-gap encoding relative
to reconstruction.

Theoretical Empirical
Algorithm Time Space Space(bytes)

[Schindler, 1997] O(nk) O(n) 5n
[Nong and Zhang, 2007] O(n log k) O(n) 22n

[Nong et al., 2008] O(n) O(n) 26n
Our Algorithm O(n) O(n) 5n

Table 4.2: Time and space bounds for inverse k-BWT context reconstruction.

4.3.4 Inverse Transform Efficiency

The recovery of the original string from T bwt and T kbwt is similar. The fundamental difference

between BWT and k-BWT inversion is the need to recover context boundaries. As discussed in Section

4.3.3, several methods exist to recover the original context information. Intuitively, we expect BWT

inversion to be more efficient than any of the k-BWT methods, and the O(nk) k-BWT algorithm to be

less efficient than the O(n) or O(n log k) algorithms. This is not the case in practice as discussed in

the previous Section. We therefore use the fastest practicalO(nk) k-BWT context recovery algorithm

in conjunction with the k-BWT reversal algorithm described in Section 4.3.2 to evaluate the efficiency

of the reverse k-BWT transform relative to the efficiency of the full BWT.

Figure 4.12 shows the efficiency of the basic O(nk) context recovery algorithm in conjunction

with the k-BWT reversal algorithm discussed in Section 4.3.2. The figure shows the efficiency of the

k-BWT reversal procedure relative to the efficiency of the full BWT algorithm. For small values of k,
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Figure 4.12: Reverse-transform efficiency of k-BWT using the O(nk) algorithm for WSJ, SOURCES,
DNA and XML in time relative to BWT for each respective file.

the inverse k-BWT outperforms BWT, regardless of text input. The inverse k-BWT is up to three times

faster than BWT inversion. The exact performance depends on the composition of the collection, but

clearly k-BWT inversion can be more efficient than BWT inversion.

Locality of Access in the Inverse k-BWT

The efficiency of k-BWT is contradictory to previous results and somewhat surprising as the k-BWT

algorithm performs additional work to reconstruct context information during inversion. Further ex-

perimental investigation into the discrepancy revealed a significant caching effect when k is small. In

order to quantify the unexpected efficiency gain, the locality of access in the k-BWT inversion process

is evaluated next. Cache performance is measured using the PAPI library described in Section 2.7.2.

Figure 4.13 shows the percentage of cache misses for variable k-order contexts during the recon-

struction of the original text for each test collection. The cache misses are shown proportional to

BWT inversion for identical files. Both algorithms perform the same task – reconstructing the text

using the LF mapping – but, exhibit a profound difference in cache behavior. For low order contexts,

k-BWT has 90% fewer cache misses than BWT. This remarkable difference is a natural by-product

of k-BWT inversion. During inversion, the algorithm jumps between different contexts, but each

partially sorted context is encoded by increasing position in the original text. The inherent locality

of reference in each context allows the operating system to cycle between each context with fewer

page-faults, resulting in fewer overall cache misses.
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Figure 4.13: Cache misses for variable k in percent proportional to the cache misses of BWT for the
respective file.

However, this observation does not hold true for DNA, where the cache misses for k < 4 are

higher than for k ≥ 4. This in contrast to the alternative collections where smaller values of k always

result in better cache performance. Upon further investigation, our experiments show that k-BWT

algorithms do not benefit from the cache effect when |Σ| is very small. For small k and |Σ|, the

number of cache misses is unusually high in DNA. Since the total number of contexts is bound by

|Σ|k, the cache can not be fully utilized: each context has only a page size ps of data pre-fetched in the

cache. Once this data segment is processed, a cache miss occurs, and a new page is loaded. At most

ps · |Σ|k data is cached at any given time, resulting in more cache misses as data is processed using

fewer distinct memory pages. Therefore, balancing the number of distinct contexts and available

memory pages can have a dramatic impact on overall efficiency. So, when |Σ| is small, using larger

values of k is desirable to allow more context groups to be cached.

4.4 Context-Bound Text Transformations in Data Compression

Last we evaluate the compression performance of the k-BWT compared to the regular BWT. We first

focus on effectiveness for different values of k. Finally we give a comprehensive time and space

trade-off analysis to conclude the chapter.
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Figure 4.14: Effectiveness of k-BWT for WSJ, SOURCES, DNA and XML. Effectiveness is measured
in entropy loss relative to BWT.

4.4.1 Compression Effectiveness

The BWT algorithm groups symbols with similar context, allowing for more effective text compres-

sion. The transform is the first of a series of steps in a typical data compression system as described

in Section 2.4.2. The k-BWT algorithm sorts the permutation matrix to a depth of k, and symbols

with similar k-order contexts are grouped together. Consecutive contexts with an lcp > k will not

necessarily be exploited in k-BWT (but they may be by chance). Therefore, a k-BWT compression

system can be less effective than a system using BWT.

First, the loss in compression effectiveness of the k-BWT relative to the sorting depth k is evalu-

ated. Effectiveness is measured in bits per symbol (bps) using the zero-order empirical-entropy H0

(defined in Section 2.1). The effectiveness is measured by replacing the BWT with the k-BWT in a

standard transform-based compression system [Burrows and Wheeler, 1994]. In the second stage

of the compression system a standard Move-To-Front transformation (MTF) is used [Bentley et al.,

1986]. Figure 4.14 shows the zero-order empirical-entropy after the MTF step for increasing values

of k. The effectiveness is reported as the entropy loss in bits per symbol relative to BWT. As k in-

creases, the performance of k-BWT approaches the effectiveness achievable using a fully sorted BWT.

For k = 6, the limited context transform achieves nearly identical compression effectiveness. For

DNA, the performance of k-BWT is independent of k. This is unsurprising since DNA compression

usually requires additional symbol model steps to improve compression effectiveness [Apostolico

and Lonardi, 2000; Chen et al., 2000]. The WSJ, SOURCES and XML collections can be compressed
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effectively using contexts as low as order-5. Overall, using a limited order context transform supports

efficient compression, and achieves impressive compression effectiveness, even when k is small.

Next the compression effectiveness of full compression systems in conjunction with the k-BWT

is evaluated. Each file is first transformed using BWT or k-BWT, then compressed with MTF and

RLE [Burrows and Wheeler, 1994], or compression boosting (BOOST) [Ferragina et al., 2005]. In the

next step a variety of standard entropy coders are then applied to compress the transformed input. In

this experiment a Huffman coder (HUFF) [Huffman, 1952], a Range Coder (RANGE) [Schindler, 1998]

and an Arithmetic coder (ARITH) [Witten et al., 1986] are used. Table 4.3 shows the compression

effectiveness in bits per symbol and efficiency in seconds of k-BWT for k = 2, 4, 8, 10, boosting and

BWT using the different compression systems. All compression systems show similar compression

effectiveness relative to sorting depth. Huffman encoding is more efficient than Range or Arithmetic

coding, but results in worse effectiveness. Compression boosting using the BWT outperforms all

systems in terms of effectiveness, but is an order of magnitude slower than all other combinations.

When k > 6, the effectiveness loss is below 10 percent in k-BWT-based compression systems. When

k > 8, the compression loss drops less to than 3 percent. The experiments show that for small k,

compression effectiveness is close to that of BWT, but is much more efficient.

4.4.2 Inverse Transform Effectiveness and Efficiency Trade-offs

The k-BWT can achieve near identical compression results as the BWT for small values of k. Next the

effectiveness and efficiency trade-offs of different inversion algorithms are evaluated. The following

algorithms are compared: the BWT, Schindler’s O(nk) context recovery algorithm in conjunction

with the k-BWT, and the O(n) algorithm which explicitly stores context information in conjunction

with the k-BWT. The O(n log k) and O(n) k-BWT context reconstruction algorithms of Nong et al.

are not evaluated as they are always less efficient than Schindler’s O(nk) algorithm when k < 10

(see Section 4.3.3). Figure 4.15 summarizes trade-offs between efficiency and effectiveness of the

various inversion algorithms. Note that each sub-graph is scaled individually to increase readability.

As k gets large, the cost of storing an increasingly dense context vector begins to offset any gains

that might be achievable by sorting to a higher k for our O(n) algorithm. The WSJ test collection

can be decoded twice as fast using k-BWT algorithms with little compression loss. The XML collec-

tion can be recovered up to 50% faster and approaches BWT effectiveness at k = 4. The SOURCES

collection can be compressed effectively and efficiently using low order contexts and the DNA col-

lection decompresses three times as fast at identical levels of effectiveness. Implicit context storage

has negligible impact on compression effectiveness for small k for all test collections.
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Figure 4.15: Efficiency vs effectiveness for block-sort inversions.

Context-bound transforms achieve similar compression effectiveness to full transform-based com-

pression systems, but can compress faster. Figure 4.16 shows the effectiveness and efficiency trade-

offs achieved using our k-bound forward transform for different compression systems. Note again

that each sub-graph is scaled individually to increase readability. We compare the effectiveness and

efficiency achieved for BWT and k-BWT compression systems where 2 ≤ k ≤ 10. We also include

the common compression systems BZIP, SZIP of [Schindler, 1997], and GZIP for reference. We do

not show boosting as it is an order of magnitude slower than all other compression systems tested.

Note the total I/O costs are included in this comparison to allow a fair comparison to the “off the

shelf” compression systems.
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Figure 4.16: Efficiency vs effectiveness for bounded context-based transformation systems.

For WSJ, the k-BWT compressor is faster than GZIP and at the same time achieves better com-

pression. All compression backends show a similar effectiveness and efficiency trade-off. The BWT

system is shown in the graph as an unconnected point at the top of the curve as k-BWT systems

approach the full BWT as k approaches n. The BWT compression systems achieve slightly better

compression but are less efficient when k < n. The BZIP2 compressor is fast but does not achieve

comparable compression effectiveness due to the fixed block size of 900 kB. The SZIP compressor

is less efficient than our k-BWT system, for all k other than k = 4. For k = 4, SZIP uses a custom

“super alphabet” method to only sort the text once, resulting in noticeably faster compression. This

special case method can also be exploited in our compression system, but is an implementation detail
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we do not explore here. The SOURCES and XML collections show similar behaviour. The k-BWT

compressor achieves remarkable compression effectiveness on the XML collection even for small k,

but this result is more an artefact of a specific, highly compressible collection than the compression

system. The DNA collection is generally not compressible without more specialized modelling steps,

and thus does not show any significant trade-offs. Note that for GZIP using the -9 parameter for best

compression, no result is shown in the DNA graph as the running time is an order of magnitude larger

than the other compressors. We also performed the same experiments for the LZMA-based compres-

sor. The results are not shown in the graph as the graph as the running time are at least 3 times, and

up to 11 time slower for DNA, slower than the next slowest other compressor shown in Figure 4.16

while achieving, on average, 3% better compression effectiveness.

4.5 Summary and Conclusion

The BWT is the main component of many succinct text indexes. Constructing the BWT is computa-

tionally expensive as a full suffix sort is performed in practice. Sorting all suffixes of a text in-memory

requires up to nine times the space of the original text. This makes the construction of the BWT one

of the major obstacle when scaling the size of succinct text indexes in practice.

In this chapter we revisited an alternative to the BWT, the k-BWT which can be constructed more

space efficiently in external memory than the regular BWT. We performed an comprehensive eval-

uation of bounded context length block sorting showed that the k-BWT can be computed efficiently

in-memory. We also proposed a new reversal algorithm which explicitly stores the context informa-

tion to avoid expensive context reconstruction. Interestingly, by using a simple external merge-sort

like algorithm, the k-BWT can be constructed efficiently using only a fixed amount of main memory.

The external k-BWT construction algorithm outperforms existing state-of-the-art external full BWT

and suffix array construction algorithms in our experiments. This makes the k-BWT especially inter-

esting for large scale text-indexes and compression systems where constructing the full BWT or the

full suffix array is not feasible. We further showed that existing, context recovery algorithms that are

theoretically efficient do not perform well in practice due to large constant factors and space usage.

The k-BWT can be constructed more efficiently for small k in-memory as well in external-

memory. Replacing the BWT with the k-BWT in succinct text indexes would allow larger indexes

to be constructed. However, replacing the BWT transform is not straightforward. The FM-Index

[Ferragina and Manzini, 2000] relies on a duality between the suffix array and the BWT to provide

operations count , locate and extract in succinct space. Due to the incomplete lexicographical order-

ing of the k-BWT suffixes, the duality between the suffix array and the k-BWT is incomplete. In the
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next chapter we investigate supporting the standard operations of a FM-Index using the k-BWT.
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H0

MTF-RLE

ARITH RANGE HUFF

bps sec bps sec bps sec

WSJ

BWT 2.12 1.70 11.14 1.67 9.93 1.78 9.80
k-BWT-2 3.42 3.08 4.09 3.08 2.88 3.31 2.75
k-BWT-4 2.56 2.12 6.15 2.12 4.94 2.34 4.81
k-BWT-8 2.33 1.77 8.67 1.77 7.46 1.89 7.33
k-BWT-10 2.17 1.72 9.93 1.72 8.72 1.87 8.59

BOOST - 1.65 108.07 1.66 60.53 1.68 87.06

SOURCES

BWT 1.71 1.43 11.44 1.42 9.67 1.48 9.83
k-BWT-2 2.45 2.15 4.71 2.16 2.94 2.26 3.10
k-BWT-4 1.86 1.60 6.44 1.60 4.67 1.68 4.83
k-BWT-8 1.72 1.50 8.83 1.49 7.06 1.56 7.22
k-BWT-10 1.71 1.47 9.88 1.48 8.11 1.53 8.27

BOOST - 1.65 108.07 1.66 60.53 1.68 87.06

XML

BWT 1.15 0.77 9.08 0.77 8.35 0.81 8.34
k-BWT-2 2.46 1.65 3.31 1.65 2.58 1.66 2.57
k-BWT-4 1.53 0.95 5.37 0.95 4.64 1.12 4.63
k-BWT-8 1.16 0.82 8.56 0.82 7.83 0.96 7.82
k-BWT-10 1.15 0.82 9.42 0.82 8.69 0.94 8.68

BOOST - 0.74 84.06 0.75 48.79 0.75 72.67

DNA

BWT 1.94 1.89 12.37 1.86 10.69 1.98 10.57
k-BWT-2 1.98 1.98 4.71 1.98 3.03 2.11 2.91
k-BWT-4 1.98 1.98 6.03 1.98 4.35 2.10 4.23
k-BWT-8 1.97 1.97 9.71 1.97 8.03 2.10 7.91
k-BWT-10 1.96 1.97 10.98 1.97 9.30 2.10 9.18

BOOST - 1.86 99.90 1.86 58.23 1.96 92.14

Table 4.3: Effectiveness and efficiency for common transform-based compression system combina-
tions. The H0 result is not shown for BOOST since this method requires each context block to be
compressed separately, resulting in effectiveness approachingHk.



Chapter 5

Searching Context-Bound Text
Transformations

Many self-indexing methods are derived from a suffix array (SA) [Manber and Myers, 1993]. A

SA supports search over a text T by sorting all suffixes in lexicographical order. However, the SA

occupies n log n bits of space which is required during search time in addition to the original text.

This makes using the suffix array prohibitive when searching over large text collections. For example,

searching in 5 GB large text using a suffix array requires 45 GB of main memory.

The BWT permutes a text T into a more compressible representation. Remarkably, the output of

the BWT can be used in conjunction with a wavelet tree [Grossi et al., 2003] to emulate the search

capabilities of a suffix array while using space proportional to the compressed is constructed over the

BWT output so that jumps between lexicographically ordered suffixes in T are possible. Processing

a pattern by jumping between suffix positions in the BWT is commonly referred to as backwards

search [Ferragina and Manzini, 2000]. The duality between the SA and the BWT over T is therefore

the key component in the compressibility and search functionality of most succinct text indexes.

Unfortunately, constructing the BWT requires the SA to be constructed. Thus, while succinct text

indexes are space-efficient, constructing them is still resource intensive due to the space required to

construct the SA.

Prior to the discovery of succinct text indexes, suffix arrays and suffix trees were in theory the most

efficient data structures to perform full-text search. From a practical perspective, a folklore method

for reducing space called a k-gram index was commonly used for substring searches [Ullman, 1977;

Sutinen and Tarhio, 1996; Puglisi et al., 2006]. A k-gram index records the occurrences of each

distinct substring of length k in an attempt to mimic the efficiency of inverted indexes. While suffix
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arrays (and the BWT) are often more convenient when searching for general patterns, there are various

applications where using a k-gram index is still advantageous. Since text suffixes need to be sorted

only up to the first k symbols, a k-gram index can be built using less space and time, and are more

I/O-friendly than full suffix arrays. Also, searches for patterns of a fixed length k can be performed

very efficiently, and are returned with all occurrences by increasing text position order.

An example where a k-gram index may be more convenient than a suffix array is for indexed

approximate searching [Navarro et al., 2001a]. One can backtrack in a suffix array, but the time is

exponential in the error threshold allowed. It is more efficient to split the pattern into subpatterns

that are searched for with a lower threshold (or even exactly). Using this approach, the full search

can be completed by backtracking or by generating a neighbourhood of all possible k-grams that

match the subpattern within the error threshold. The approximate occurrences of the subpattern

must be merged, and the occurrence lists for the distinct pieces are processed to find areas where an

occurrence may be present. False matches must be filtered out from each possible occurrence using

an on-line pattern matching algorithm. This process requires subpatterns of a fixed length k, and

having potential matches returned in text position order is vital to efficient intersection and union

operations. A suffix array needs additional query time and space to sort the possible occurrences in

text order. In fact, one of the most prolific genomic search systems, BLAST, is reliant on a k-gram

index and not SA-based algorithms for this reason [Altschul et al., 1990]. The k of interest in BLAST

is around 11–12 for DNA, and 3–4 for protein sequences. However, the space cost to explicitly store

all possible k-grams grows exponentially with k in the worst case, limiting the substring segment

sizes used in practice.

In chapter 4 we explored construction and trade-offs related to the k-BWT. We showed that the k-

BWT can be constructed more efficiently in external memory for large text collections compared to the

regular k-BWT. However, in addition to constructing the k-BWT for large data, searching in a k-BWT

transformed text is non-trivial. In this chapter, we explore a variant of succinct text indexes derived

from k-BWT. In the BWT, the symbols in T are fully sorted in lexicographical order of contexts. The

k-BWT only sorts the suffixes in T up to a certain length k. Here we explore the potential of the

k-BWT as a succinct text indexes representation of text that offers k-gram index search capabilities.

Our contributions and the structure of this chapter can be summarized as follows:

1. First we briefly refresh the backward search procedure to introduce notation in Section 5.1.

2. We present the first backwards search algorithm for k-BWT permuted text in Section 5.3.

3. We show that it is possible to search for patterns in the same way as in a k-gram index, retriev-
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ing the occurrences in text position order.

4. We also demonstrate the recovery of any substring of the original text. Surprisingly, operations

within k-BWT appear to be significantly more challenging than on a full BWT, and so our

solution trades some compression effectiveness when k is small.

5.1 Backwards Search in the BWT

Here we briefly review the BWT transform and the backward search procedure used to emulate search

in a suffix array (SA) using the BWT which is described in more detail in Sections 2.4.1 and 2.5.2. We

further introduce the notation used throughout this chapter.

The BWT produces a permutation of a string T of size n over an alphabet of size σ, denoted T bwt,

by sorting the n cyclic rotations of T into full lexicographical order, and taking the last column of

the resulting n × n matrix M to be T bwt. To produce T bwt for a given text T , it is not necessary

to construct M as there is a duality between T bwt and the SA over a text T : T bwt[i] = T [SA[i] −
1 mod n].

The original text T can be recovered from T bwt in linear time. To recover T from only T bwt we

first recover the first column, F , in M by sorting the last column (L = T bwt), in lexicographical

order. By mapping the symbols in L to their respective positions in F with L[i] = F [j] (usually

referred to as the LF mapping, j = LF(i)), we can recover T backwards as T [n − 1] = T bwt[0] = $

and T [j − 1] = T bwt[LF(i)] if and only if T [j] = T bwt[i]. The LF mapping is computed using the

equation

LF(i) = LFc(i, c) = Q[c] + rank(T bwt, i, c) . (5.1)

where c is the symbol T bwt[i], and Q[c] stores the number of symbols in T bwt smaller than c. Using

the LF mapping we can recover T starting with position of symbol $ in T bwt. This is described and

visualized in detail in Section 2.4.1.

5.1.1 Searching in the BWT

Performing a search in BWT is performed by processing the pattern in reverse order. The algorithm

is commonly referred to as backwards search and can be summarized as follows. Recall that all

rows are sorted in lexicographical order inM. Therefore, for a pattern P , all occurrences of P in T

must have a corresponding row inM within a range 〈sp, ep〉, where T [SA[sp], SA[sp] + m − 1] =

T [SA[ep], SA[ep] + m − 1] = P . That is, the rows inM are prefixed by P . The backwards search
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procedure determines the 〈spm, epm〉 of rows inM prefixed by P . To determine the range withinM,

we first determine the range 〈spm, epm〉 withinM that corresponds to P [m− 1] using Q[P [m− 1]].

Then, for each symbol j = m − 1 down to 0 in P , we iteratively find 〈spj , epj〉 by calculating the

number of rows within 〈spj+1, epj+1〉 that are preceded by the symbol P [j] in T . For a given row

j, the LF mapping can be used to determine the row in M representing the symbol preceding j in

T . The preceding row is determined by counting the number of occurrences of c = T bwt[j] before

the current row and ranking these occurrences within Q[c]. Assume we have located 〈spj+1, epj+1〉,
which corresponds to the rows prefixed by P [j + 1,m]. Then

spj = LF(spj+1 − 1, P [j]) + 1, (5.2)

will calculate the position inF of the first occurrence ofP [j] within 〈spj+1, epj+1〉, and thus compute

the start of our range of rows withinM that correspond to P [j,m]. Similarly, we compute

epj = LF(epj+1, P [j]). (5.3)

This process is visualized and described in detail in Section 2.5.2. The function LF can also be used

to recover the original text or any substring T [i..j]. This is referred to as the extract operation.

Additionally, the suffix array values of each element in 〈sp, ep〉 can be extracted using the LF in

conjunction with a sampled version of the suffix array. This is referred to as the locate operation.

Both operations are discussed in detail in Section 2.5.2.

5.2 Context-Bound Text Transformations

Here we briefly review the k-BWT and the notation used in the rest of this chapter. The k-BWT is a

variation of the BWT which partially sorts the n rotations based on k length prefixes. Unlike the full

BWT, the k-BWT only sorts the permutation matrixM up to a depth k (Mk). The transform itself

has been described in detail in Sections 2.4.3 and 4.1.2.

Figure 5.1 shows the M2 rotations of the k-BWT for the string T = chacarachaca$ and

k = 2, producing T kbwt. Due to the fixed sorting depth, multiple suffixes can be treated as k-equal

during the sorting stage. These suffixes are grouped in context groups or k-groups, where suffixes in

the k-sorted suffix array (SAk) are stored in ascending order according to their position in T for each

context group. The k-group boundaries can be can be marked in a bitvector, Dk. For our example

shown in Figure 5.1, Dk is 1110011010101. The bitvector is formally defined in Definition 7 in

Section 4.1.2.
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1 12 12 $ a

1 11 11 a $ c

1 2 9 a c a r a c h a c a $ h

0 6 2 a c h a c a $ h

0 9 6 a c a $ r

1 4 4 a r a c h a c a $ c

1 3 10 c a r a c h a c a $ a

0 10 3 c a $ a

1 0 7 c h a c a r a c h a c a $

0 7 0 c h a c a $ a

1 1 8 h a c a r a c h a c a $ c

0 8 1 h a c a $ c

1 5 5 r a c h a c a $ a

T kbwtSAk SA FDk

Figure 5.1: Example k-BWT permutation matrixMk for k = 2 of the string T = chacarachaca$
with the output being the last column inMk: T kbwt = achhrcaa$acca.

Due to the incomplete sorting ofMk, it is not so straightforward to recover T from T kbwt using

LFk, as the mapping only allows us to determine the context preceding the current symbol. For

example, consider the following context jump in Figure 5.1, where our initial starting position is

T kbwt[7] = a and LFk(7) = 3. The symbol preceding “a” should be T kbwt[4] = h, but due to

the incomplete sorting ofMk, the correct row – in the same k-group – is actually 5, which results

in T kbwt[5] = r. When recovering T from T kbwt, LFk is only guaranteed to jump to the correct

preceding k-group. Individual context groups need to be processed in reverse sequential order. After

performing LFk, instead of using the row similar to the full BWT, we jump to the last unprocessed

row within a given k-group. To consistently determine the correct context bounds, a bitvector Dk is

required in order to reconstruct T from T kbwt which is discussed in Chapter 4.

5.3 Backwards Search in Context-Bound Text Transformations

Next follows the main contribution of this chapter. We provide proof that performing backward

search and thus calculating LF() is possible in T kbwt. Note, in this section we choose a different

example string than throughout the rest of this thesis to highlight certain aspects of the problem. We

further provide a detailed walk-through example following the formal proof.
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As explained, performing LF() and thus backwards search on a k-BWT permuted text is not so

straightforward. The following lemma shows that one can, however, run the counting as usual on

patterns of length m ≤ k.

Lemma 1 The LFc(i, c) mapping formula of Eq. (5.1) works correctly on the k-BWT if i is the last

row of a context group.

Proof. The formula counts the number of occurrences of c in T bwt[0, i]. Since i is the last row

of a k-context, the set of rows in M[0, i] is the same set of rows in Mk[0, i]. So, the number of

occurrences of any c in T bwt[0, i] is the same as in T kbwt[0, i].

Therefore, we can seamlessly search for patterns up to length k. This can be seen in Figure 5.1.

The entries in the prefix of the suffix array SAk[0..i] at the end of a context group are permutations of

the same prefix in the regular suffix array SA[0..i].

Lemma 2 The algorithm to compute the range SA[sp, ep] used on the BWT works verbatim on the

k-BWT for patterns of length m ≤ k.

Proof. As long as m ≤ k, all the ranges 〈spi, epi〉 will be composed of complete k-contexts. There-

fore the formulas in Eqs. (5.2) and (5.3) compute LF on rows that are at the end of k-contexts. By

Lemma 1, all the 〈spi, epi〉 are thus correctly computed.

Note in particular that, if m = k, we will be able to collect the occurrences in text position order,

since SA[sp, ep] will correspond precisely to a k-context of T kbwt. However, it is not possible to

compute correct ranges SA[sp, ep] for patterns longer than k because the contexts are only k-sorted,

and thus the occurrences of longer patterns are not contiguous in the k-BWT.

A way to handle longer patterns P [0,m− 1] is to search for P [m− k,m− 1] as usual, and then

track each candidate to determine whether it is an occurrence of the full P . But we must be able to

compute LF(j) for any j. Computing arbitrary LF(j) values is also necessary for locating occurrences

and for displaying arbitrary substrings of T , by using the sampling mechanisms described at the end

of Section 5.1. The rest of the section is devoted to showing how we can compute LF.

Theorem 1 The function LF can be computed on matrixMk in the time required to compute rank ,

select and access using a wavelet tree on an alphabet of size σ, using nHk + 2nHk−1 + o(n log σ)

bits of space, for any k ≤ α logσ(n)− 1 and constant α < 1.
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Proof. In order to compute i = LF(j), the bitmapDk is used to find p = select(Dk, rank(Dk, j, 1), 1)

which corresponds to the beginning of the k-group rowMk[j] belongs to. LetMk[j] = xayb, where

|x| = k − 1 and |a| = |b| = 1, so row j belongs to group Cxa. ThenMk[i] = bxay belongs to the

group Cbx. Moreover, since occurrences of xa are sorted in text position order inside Cxa, row j is

the (j − p+ 1)-th occurrence of xa in T in text position order.

In order to find out the starting position of group Cbx, the bitmap Dk−1 is used, so that p∗ =

select(Dk−1, rank(Dk−1, j, 1), 1) gives the starting position of group Cx in T k-1-BWT. Then, p′ =

Q[b] + rank(T kbwt, p∗ − 1, b) + 1 gives the starting position of group Cbx in T kbwt. The reason

is that rank(T kbwt, p∗ − 1, b) counts the number of text substrings of the form bz, with z < x in

lexicographic order. Now, within group Cbx, the rows are sorted in text position order, thus row i

corresponds to the (i−p′+1)-th occurrence of bx in T , in text order. Furthermore, rowMk[i] points

to an occurrence of bxa in T , whereasMk[j] points to the next position, xa preceded by b.

Thus a way to connect j and i is as follows. Store the wavelet tree of T k-1-BWT, where all the

characters preceding x are laid out in text position order in the area corresponding to group Cx.

Similarly, store the wavelet tree of S, which is similar to T k-1-BWT but the characters following (not

preceding) x are recorded for each contextCx (note the areas coincide for T k-1-BWT and S). Therefore,

r = select(S, rank(S, p∗−1,′ a′)+j−p+1,′ a′) finds the rank of rowMk[j] (that is, its occurrence

of xa), in text position order, among the occurrences of x in T , and q = rank(T k-1-BWT, r,′ b′) −
rank(T k-1-BWT, p∗ − 1,′ b′) is the number of occurrences of bx up to that position. Hence the answer

is i = LF(j) = p′ + q − 1.

Note this method requires determining the symbol preceding the suffix at position T [SA[j]], which

in our example is a. In a BWT permuted text, this symbol corresponds to bwt[SA[j]]. However, due

to the incomplete sorting of the k-BWT, this cannot be guaranteed and therefore has to be stored

explicitly. v This information can be stored in an array A of at most σk entries, storingMk[j][k] for

all the rows j belonging to each context. Therefore a = A[rank(Dk, j, 1)].

The total time invested has been a constant number of rank , select and access operations on

wavelet trees. Thus, asymptotically, performing LF on the k-BWT is as fast as performing LF over the

BWT using a wavelet tree. The overall complexity depends on the wavelet tree used. For example, a

balanced wavelet tree requires O(log σ) time per operation.

As for space, we store the wavelet trees of T kbwt and those of T k-1-BWT and S. If we use the com-

pressed bitvector representation of Raman et al. [2002] to represent the bitmaps of the wavelet trees,

T kbwt requires nHk(T ) + O(σk+1 log n) bits for any k ≥ 0. The reason is that the existing proof

(see Mäkinen and Navarro [2007]) of this space bound for T bwt only uses the fact that the suffixes are

k-sorted, and thus it also applies to T kbwt. Similarly, then, T k-1-BWT requires nHk−1 + O(σk log n)
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D2 F 1 S T 2-BWT

1 $ a c a c a c r a c a c a
1 a $ a c a c a c r a c a c
1 a c a c a c r a c a c a $
0 a c a c r a c a c a $ a c
0 a c r a c a c a $ a c a c
0 a c a c a $ a c a c a c r
0 a c a $ a c a c a c r a c
1 c a c a c r a c a c a $ a
0 c a c r a c a c a $ a c a
0 c a c a $ a c a c a c r a
0 c a $ a c a c a c r a c a
1 c r a c a c a $ a c a c a
1 r a c a c a $ a c a c a c

M2

i D3 SAk F 1 2 T 3-BWT

0 1 12 $ a c a c a c r a c a c a
1 1 11 a $ a c a c a c r a c a c
2 1 0 a c a c a c r a c a c a $
3 0 2 a c a c r a c a c a $ a c
4 0 7 a c a c a $ a c a c a c r
5 0 9 a c a $ a c a c a c r a c
6 1 4 a c r a c a c a $ a c a c
7 1 10 c a $ a c a c a c r a c a
8 1 1 c a c a c r a c a c a $ a
9 0 3 c a c r a c a c a $ a c a

10 0 8 c a c a $ a c a c a c r a
11 1 5 c r a c a c a $ a c a c a
12 1 6 r a c a c a $ a c a c a c

M3

Figure 5.2: The k-BWT permutation matrixMk used to search for pattern P = cacr in text T =
acacacracaca$ where k = 2 (right) and k = 3 (left).

bits. Finally, S requires also nHk−1 + O(σk log n) bits because the sets of characters within each

(k − 1)-context is the same as for (T rev)k-1-BWT, where T rev is T read backwards, and thus the

(k − 1)-th order empirical entropy of S and (T rev)k-1-BWT are equal. Furthermore, the (k − 1)-th

order entropy between T and T rev differs only by O(log n) bits for any k [Ferragina and Manzini,

2005]. The bitmaps Dk and Dk−1 have only O(σk) bits set out of n, and thus can be represented

withinO(σk log n) + o(n) bits while supporting constant-time binary rank and select [Raman et al.,

2002]. In practice, for small k, both vectors will be sparse and can therefore be compressed more ef-

ficiently using the representations of Okanohara and Sadakane [2007]. Array A requiresO(σk log σ)

bits. To obtain the final space bound of the theorem we note that O(σk+1 log n) ⊂ o(n log σ) if

k ≤ α logσ(n)− 1 for any constant α < 1.

5.3.1 Example LF Step in the k-BWT

Here we briefly walk through one LF step using the text T = acacacracaca$ for k = 2 and

k = 3 shown in Figure 5.2. The rows inM3 prefixed by the pattern caca are 8 and 10. However,

the row 9 within the range 〈8, 10〉 is not prefixed by caca but cacr. In the following example we

perform i = LF(j) for j = 10.

First we determine the k-group boundary of the context Ccac within M3 of our row j = 10
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i D3 SAk F 1 2 T 3-BWT

0 1 12 $ a c a c a c r a c a c a
1 1 11 a $ a c a c a c r a c a c
2 1 0 a c a c a c r a c a c a $
3 0 2 a c a c r a c a c a $ a c
4 0 7 a c a c a $ a c a c a c r
5 0 9 a c a $ a c a c a c r a c
6 1 4 a c r a c a c a $ a c a c
7 1 10 c a $ a c a c a c r a c a
8 1 1 c a c a c r a c a c a $ a
9 0 3 c a c r a c a c a $ a c a

10 0 8 c a c a $ a c a c a c r a
11 1 5 c r a c a c a $ a c a c a
12 1 6 r a c a c a $ a c a c a c

j

p

Figure 5.3: Mapping the row j = 10 to the context group Ccac starting at position p = 8.

by performing p = select(Dk, rank(Dk, j, 1), 1) = 8. This is shown in Figure 5.3. Next we de-

termine starting position (p∗) of the 2-order context Cca of row j for j = 10. In order to find

the starting position we use D2, so that p∗ = select(D2, rank(D2, j = 10, 1), 1) = 7 gives

the starting position of group Cca in T 3-BWT. This is shown in Figure 5.4. Using p∗, we cal-

culate the starting position of the destination context group of the LF step. Here we calculate

p′ = Q[‘a‘] + rank(T 3-BWT, p∗ − 1, ‘a‘) + 1 = 2 which gives the starting position (p′) of group

Caca in T 3-BWT. The reason is that rank(T 3-BWT, p∗ − 1.‘a‘) counts the number of text substrings of

the form az, with z < c in lexicographic order. That is the number of substrings in T 3-BWT start-

ing with symbol ‘a’ smaller than aca. This corresponds to the number times symbol ‘a’ occurs in

T 3-BWT[0 . . . p∗ − 1]. This is again shown in Figure 5.4.

Within the context group Caca, all occurrences of aca are stored in text order. Thus, our desti-

nation row i within the context group corresponds to the (i − p′ + 1)-th occurrences of aca in T .

Further, we know that row i corresponds to an occurrence of acac in T whereas row j corresponds

to an occurrence of cac in T preceded by ‘a’. Next we show how row j can be connected to row i

using these facts.

First, we map row j inM3 to the corresponding row r inM2. We compute r by determining

the row in S, the symbols following each 2-order context in M2, which contains the (j − p)-th

occurrence of symbol ‘c‘. This corresponds to the position of row j among the rows in the 2-order

context Cca in M2. We calculate r as r = select(S, rank(S, p∗ − 1,′ c′) + j − p + 1,′ c′) =

select(S, rank(S, 6,′ c′) + 10− 8 + 1,′ c′) = select(S, 4,′ c′) = 9. This is shown in Figure 5.5 where

we count the number times symbol ‘c’ occurs following the rows in context group Cca shown as red.
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i D3 D2 SAk F 1 2 T 3-BWT

0 1 1 12 $ a c a c a c r a c a c a
1 1 1 11 a $ a c a c a c r a c a c
2 1 0 0 a c a c a c r a c a c a $
3 0 0 2 a c a c r a c a c a $ a c
4 0 0 7 a c a c a $ a c a c a c r
5 0 0 9 a c a $ a c a c a c r a c
6 1 0 4 a c r a c a c a $ a c a c
7 1 1 10 c a $ a c a c a c r a c a
8 1 0 1 c a c a c r a c a c a $ a
9 0 0 3 c a c r a c a c a $ a c a

10 0 0 8 c a c a $ a c a c a c r a
11 1 1 5 c r a c a c a $ a c a c a
12 1 1 6 r a c a c a $ a c a c a c

j

p∗

p′

Figure 5.4: Mapping the row j = 10 to the context group Cca starting at position p∗ = 8 and the
destination context group Caca starting at postition p′ = 2.

The occurrences (q) of symbol ‘a’ in context group Cca inM2 which corresponds to the number of

occurrences of ‘a‘ in T 2-BWT[p∗ . . . r] can now be used to calculate the correct destination row i in

M3. We calculate q as q = rank(T 2-BWT, r,′ a′) − rank(T 2-BWT, p∗ − 1,′ a′) = 3, shown in blue in

Figure 5.5. Thus i = LF(j) = p′ + q − 1 = 2 + 3− 1 = 4.

5.4 Practical Evaluation and Alternative Representations

In our initial approach, we require three wavelet trees over different permutations of T to fully support

LF over a k-BWT permuted text. Table 5.6 shows the difference between LF3 and the LF mapping to

jump to the correct preceding row for the text T = acacacracaca$ and k = 3.

Instead of storing additional wavelet trees, we could also explicitly store the correction informa-

tion δ for each row inMk that does not jump to the correct preceding row using only LFk. For each

context Ci of size d, we can store the correction information required in at most d log d bits. The con-

text length decreases as we increase the sorting depth k. Therefore, we need to store less correction

information as k increases. The correction information can be calculated as follows in linear time:

1. Perform the reverse k-BWT to recover T from T kbwt.

2. During the reverse transform, each context group C is processed in reverse sequential order.

3. For each context group, keep track of the current position p.
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D2 F 1 S T 2-BWT

1 $ a c a c a c r a c a c a
1 a $ a c a c a c r a c a c
1 a c a c a c r a c a c a $
0 a c a c r a c a c a $ a c
0 a c r a c a c a $ a c a c
0 a c a c a $ a c a c a c r
0 a c a $ a c a c a c r a c
1 c a c a c r a c a c a $ a
0 c a c r a c a c a $ a c a
0 c a c a $ a c a c a c r a
0 c a $ a c a c a c r a c a
1 c r a c a c a $ a c a c a
1 r a c a c a $ a c a c a c

p∗

j
r

Figure 5.5: Mapping the row j = 10 inM3 to it’s corresponding row r inM2.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
LF3 1 7 0 8 12 9 10 2 3 4 5 6 11
LF 1 7 0 8 12 10 9 5 2 3 4 6 11
δ +1 -1 +3 -1 -1 -1

Figure 5.6: The difference between LF and LF3().

4. The value δj is the correction information required to jump from row j to row v and can be

calculated as δj = pv − LFk(j).

Note that we only store correction information for the n′ non-trivial k-groups (that is, those of

size more than 1). Those k-groups are stored according to their order within Dk at a cost of n′ log n

bits, in addition to the cost of storing the correction information for each k-group in d log d bits. To

access the correct k-group for a given row j, we compute the number of non-trivial k-groups, o,

preceding j, where o = rank(Dk, j, ‘10‘) (that is the bitpattern 10, which is an extension of binary

rank for fixed substrings, which is easily handled in constant time within o(n) extra space).

We can further apply the same concept to our wavelet tree approach: remove the information

in Mk−1 associated with trivial k-groups. The k-groups in Mk−1 of size 1 will never be used to

calculate LF as Eq. (5.1) is already correct on the last row of each group, hence it is correct on groups

of size 1. To map a row j in Mk to its corresponding row j′ in Mk−1, we subtract the number

of trivial groups before j′, as these are not stored explicitly. A trivial k-group corresponds to two

consecutive 1s in Dk−1. Therefore, the correct row j′′ = j′− rank(Dk−1, j
′, 11) (bitpattern 11). By
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Figure 5.7: Mean average k-group size for each data set as k increases. Note the logarithmic scale
of the y-axis.

combining all of these techniques, the additional information required to perform LF decreases as we

increase the sorting depth k.

We now compare our backward search approach storing three wavelet trees, to storing the cor-

rection information δj explicitly. In our experiment, we compare multiple 200 MB data sets from the

Pizza&Chili corpus and the TREC collection (see Section 2.7.3). The number of k-groups and their

mean size for each data set is shown in Figure 5.7.

The mean context size decreases logarithmically for DNA. For the data sets WSJ, SOURCES and

XML, and a sorting depth of 5, the mean k-group size is less than 100. This suggests that, for large

k, storing the correction information is a viable alternative to storing three wavelet trees (although

these would also decrease their sizes due to the increase of trivial groups). To validate this assump-

tion, the total space requirements for the wavelet tree approach and the explicit storage of correction

information for each data set was measured. We use Huffman-shaped wavelet trees [Mäkinen and

Navarro, 2004] in conjunction with succinct rank operations [Raman et al., 2002] to store and access

the wavelet trees over T 2-BWT and S. Figure 5.8 shows the size of the wavelet trees as a percentage

of the space required to store the correction information explicitly using d log d bits for a k-group of

size d.

As expected, the ratio increases with k because, while both approaches benefit from the trivial

groups that appear, the correction information benefits from smaller groups due to its log d space

factor, whereas the wavelet trees are blind to the group sizes. Note also that storing the correction
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Figure 5.8: Storage requirements of the wavelet tree approach as a percentage of storing the correc-
tion information explicitly for variable k.

information explicitly is more efficient for English text (WSJ) and source code (SOURCES) for k > 6

or 7. However, DNA and XML can always be stored more efficiently using the wavelet trees approach.

The reason for this discrepancy is two-fold. Firstly, DNA has a large number of contexts, even for

k = 10, relative to the other files. Secondly, the XML file shows similar k-group sizes to WSJ

and SOURCES, but it can be stored more efficiently using the wavelet tree approach as it is more

compressible.

5.5 Applications

The k-BWT can be regarded as a self-index representation of a k-gram index. A k-gram index (often

also called a q-gram index in literature) stores, for each unique k-gram in T , a postings lists contain-

ing all occurrences of the k-gram in T . Thus a k-gram index is a type of inverted index [Sutinen and

Tarhio, 1996; Ullman, 1977]. A k-gram index is a popular alternative for constructing inverted in-

dexes on languages that are not amenable to term tokenization and stemming, and a core component

in the highly successful BLAST application for searching in genomic data [Altschul et al., 1990].

In essence, our method can represent the sequence T in compressed form, and in addition replace

the need to explicitly store the position offsets for each k-gram. We have shown in Section 5.3 how to

carry out searches for patterns of length k, in which case the index delivers the occurrence positions

in text order. Thus, we obtain a listing that is explicitly stored in a classical k-gram index. Herein lies

a distinct advantage of the k-BWT-based index over a similar BWT-based index. Consider the partial



Applications 146

SAL 5 102 412 99 810 455

SA 5 32 74 102 202 235 412 512 91 99 424 721 810 123 234 455 469

Dk 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 . . .

t t t t t

Figure 5.9: Suffix array sampling using t intervals can be used to allow efficient access to parts of a
k-group corresponding to an area in T .

k-BWT based index shown in Figure 5.9. As discussed above, within a k-group, all suffixes are stored

in increasing order. This would not be the case for the BWT. Instead of storing SA completely, we

only store every t-th element at a total cost of n/t log n bits in SAL. This was discussed in detail

in Section 5.1. Interestingly, we can use the samples stored in SAL to efficiently locate parts of a

k-group corresponding to occurrences within a given text region. Here we perform binary search

over the stored samples to determine the rows in Mk and thus the suffix positions in SAk which

are of interest. Therefore, instead of reconstructing all suffix positions, which is required for a BWT

based index, we only reconstruct the relevant suffix positions using the sample positions in SAL.

This technique is especially relevant for position-restricted searches, where one is only interested in

occurrences of P within a certain area of T . This task is generally difficult to perform with regular

suffix arrays and BWT-based indexes as occurrences are delivered in lexicographical order of their

suffixes. Additionally, we are able to display any text substring from the k-BWT-based self-indexed

representation as we can perform LF() as discussed in Section 5.3.

We now compare a simple k-gram inverted index to our k-BWT wavelet tree approach. We imple-

mented a simple k-gram inverted index using d-gap and gamma encoded inverted lists for all match

positions in the text. Figure 5.10 reports size of our index proportional to the size of the k-gram

inverted index for increasing values of k. The size of the k-gram index is reported as the size of all

compressed posting lists, plus the space required to store all necessary k-grams (v) in a dictionary,

namely v log n + vk log σ. To provide a fair estimate of the lower cost bound to optimally store the

gamma encoded, d-gapped posting lists, the measured size of the k-gram index was halved. We com-

pare this conservative estimate against the actual size to store T k-1-BWT, S, Dk and Dk−1. Here we

use the practical space saving techniques discussed in Section 5.4 to reduce the size of S and T k-1-BWT

by storing only information for non-trivial k-groups. Note we are not considering the cost of storing

the compressed text in the k-gram index, nor the cost of storing T kbwt, which should be similar.

Note that, for small k, the k-gram index is more space efficient than our k-BWT-based wavelet tree

approach. As we increase the sorting length, the k-gram index space usage grows rapidly, whereas

our approach consistently uses less space. For k = 4 or 5, we already require less space than the



Applications 147

2 4 6 8 10

50
10

0
15

0
20

0

k

w
tr

ee
si

ze
pr

op
ro

tio
na

lt
o

k-
gr

am
id

x WSJ

DNA

SOURCES

XML

Figure 5.10: Storage requirements of the wavelet tree approach (T k-1-BWT, S, Dk and Dk−1) as a
percentage of the k-gram index space usage.

k-gram index. For k = 10, the wavelet trees require 30% to 50% of the k-gram index size (recall

this is a lower bound as we are halving space required by the gamma encoding). The size of the

k-gram index increases as the posting listing size decreases for larger k. Smaller posting lists can be

compressed less effectively using d-gap and gamma encoding. The dictionary size also increases at

dramatically as more unique k-grams are stored. The wavelet trees become more compressible as we

increase the sorting length and the amount of extra information required to perform LF decreases as

the number of trivial k-groups increases.

To conclude the practical evaluation we compare the absolute space usage of our approach to

the k-gram index, a normal wavelet tree over T bwt as used by a FM-Index, and a wavelet tree over

T bwt. Figure 5.11 shows absolute space usage in MB for the WSJ data set. The wavelet tree over

T bwt uses the least amount of space. For k = 5 the space usage of T kbwt comes close to that

of T bwt. The k-gram index is most efficient for small k as the postings lists are large and can be

compressed efficiently. However, the space usage of the k-gram index can grow exponentially in

the worst case with respect to the sorting depth. The T kbwt plus auxiliary information required to

perform LF requires roughly three times the space of T bwt. The amount of auxiliary information

required decreases as the sorting depth increases.

Overall our experiments show an interesting phenomenon: the space requirements for our index

decrease as k grows, whereas in a classical k-gram index, the space grows exponentially faster with

k. This makes our representation attractive, for example, in applications where using larger k values
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Figure 5.11: Absolute storage requirements in MB of the wavelet tree approach, the k-gram index,
the wavelet tree over T kbwt, and over T bwt for the WSJ data set.

is desirable but not possible with a classical k-gram index.

Additional Applications

In Section 5.3 we described simple techniques to handle searches for patterns of lengths different

from k, for applications where such a search is necessary. In general, our index can mimic any of the

well-known algorithms on k-gram indexes. For example, we can split the pattern P into k size chunks

P1,P2, . . . Pr. For each chunk Pi we determine 〈spi, epi〉 and the locations of each match to Pi. We

then intersect these results to obtain the results to the larger pattern P . The ranges 〈spi, epi〉 for each

chunk will be in ascending order. We can then perform an r-way merge using a min-heap over the

smallest element in each occurrence range to get the final occurrence listing. Each range could further

be processed simultaneously during the intersection process, returning increasing positions with each

recovered SAk[i] element.

Another example occurs in BLAST-like applications, where approximate searches for P are re-

duced to a set of searches for k-grams of P . Then, in the most general formulation [Navarro et al.,

2001a], one looks for text areas where at least h distinct k-grams of P appear in nearby text po-

sitions. Retrieving the k-gram occurrences in text order is essential for the effectiveness of these

methods. Using this approach, we are able to leverage standard inverted indexing techniques to

process queries, without explicitly storing the inverted lists for each k-gram occurrence. In fact,

k-gram-based inverted files often do not explicitly store the position of each k-gram, but rather the
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document occurrence. This saves space, but means false match filtering must be performed on each

possible document occurrence [Puglisi et al., 2006]. Our method is able to return the exact positions

of the candidates without the need to perform false match filtering in documents.

5.6 Summary and Conclusion

Succinct text indexes can be used to lower the space requirements of suffix-based search indexes.

They can replace a suffix array requiring an n log n bits representation with a compressible text index

using space equivalent to the compressed representation of the original text. However, constructing

the index still requires that the full suffix array to be constructed. This is prohibitive in regards to

indexing large text collections using suffix-based indexes. In this chapter we investigated a succinct

text index which does not require the full suffix array. Instead, we used a representation which

requires suffixes to be only sorted to depth k. Specifically we replaced the BWT with the k-BWT

which we showed can be constructed more efficiently in external-memory than the BWT. In this

chapter, we presented the first backwards search algorithm for k-BWT permuted text. We proved

that function LF() can be performed over the k-BWT using auxiliary information. This allows for the

original text to be extracted from an arbitrary position in T from T kbwt. We improved our theoretical

result by providing space saving techniques which reduce the space required to store the auxiliary

information as the sorting depth k increases. We showed how a k-BWT-based self-index compares

to a regular k-gram inverted index. Our analysis showed that as k increases, the self-index uses less

space while the size of the k-gram index increases. We further discussed applications of a k-BWT

based self-index to position-restricted searching and approximate pattern matching.

Interestingly, the k-BWT was independently discovered 15 years ago by Schindler [1997] and

Yokoo [1999]. They described an alternative approach in which the n rotations are only partially

sorted to a fixed prefix depth, k. At the time, using the BWT to perform text search has not yet been

discovered [Ferragina and Manzini, 2000]. In this chapter we showed that the k-BWT can be used to

construct succinct text indexes which allow efficient search for patterns up to length k. In the next

chapter we discuss a different derivative of the k-BWT. Instead of sorting all suffixes to depth k, we

sort suffixes based on the size of their context groups. Thus the resulting suffix array is sorted to

variable depths. We refer to the resulting text permutation as a variable depth BWT or short v-BWT.

Specifically we apply the v-BWT to the area of approximate pattern matching.



Chapter 6

Approximate Pattern Matching using
Context-Bound Text Transformations

Approximate pattern matching is a classic problem in computer science with a wide variety of ap-

plications. A formal definition of the approximate pattern matching problem can be found in Def-

inition 2 in Chapter 1. There are many practical applications and problems related to approximate

pattern matching such as biological applications which have been well documented [Gusfield, 1997].

Efficient solutions to approximate pattern matching can also be applied in a variety of IR applications.

Examples where approximate pattern matching can be applied in the IR domain include natural lan-

guage keyword queries with spelling mistakes [Kukich, 1992], OCR scanned text incorporated into

indexes [Kukich, 1992], language model ranking algorithms based on term proximity [Metzler and

Croft, 2005] and DNA databases containing sequencing errors [Li and Durbin, 2009].

If the size of the text T is not large and only a few search queries will be performed, on-line

algorithms such as agrep [Wu and Manber, 1992] can perform these operations in time proportional

to the length of the text. However, on-line solutions are typically not sufficient for massive document

collections, or situations which require a large number of queries to be run on the same collection. In

these scenarios, building an index capable of supporting approximate matching queries is desirable.

Inverted indexes are often used in the context of approximate pattern matching. Instead of index-

ing text segmented into terms, T is split into overlapping k-grams (in literature often called q-grams).

This index type is often referred to as a k-gram index (or q-gram index respectively) which gener-

ally perform well in practice despite providing no worst case performance guarantees. Therefore,

a k-gram index is simply an inverted index storing positions of all distinct substrings of length k

in T . The k-gram index is used as a filtering tool to generate potential positions in T matching
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P . These positions must then be verified in the text using a variety of different edit distance-based

algorithms [Navarro and Raffinot, 2002].

One of the weaknesses of traditional k-gram indexes is the use of fixed text segments of length k.

If k is small, the inverted files can be very long for common k-grams, which degrades performance

for many queries. However, if k is large, then the size of the index grows at an unacceptable rate.

Recently, Navarro and Salmela [2009] show that using variable length k-grams can help find the

best trade-off between the length of the postings lists, and the total number of “grams” that must

be indexed. Unfortunately, the approach to finding the substrings to be indexed is computationally

expensive as a suffix tree has to be created during construction time.

Another viable approach to indexing text collections allowing errors is to use a modified succinct-

text index to support approximate text matching [Russo et al., 2009]. Most research in this domain

has focused on providing worst case performance guarantees using a suffix array (or a compressed

equivalent) to perform fast substring matches [Chan et al., 2010]. In this chapter we present an

alternative, suffix array-based index. We present a variant of the BWT, called the variable depth

Burrows-Wheeler transform (v-BWT), and apply it to the approximate pattern matching problem.

Our contributions and the structure of this chapter can be summarized as follows:

1. We discuss the forward v-BWT transform in Section 6.2.

2. We show that the transform is always reversible in Section 6.3.

3. We demonstrate the use of the v-BWT to construct an index, precluding the need to explicitly

represent the v-grams using postings lists in Section 6.4.

4. We show how the v-BWT can be used to create a variable length k-gram partitioning for variable

length k-gram indexes without requiring a suffix tree in Section 6.4.2.

5. We empirically evaluate the usefulness of our transform by comparing the number of verifi-

cations required when performing approximate matching on both DNA and ENGLISH text in

Section 6.5.

6.1 Text Transformations

In Chapters 4 and 5 we discussed and evaluated two text transformations, the Burrows-Wheeler

Transform (BWT) and the context-bound BWT often referred to as the k-BWT. The regular BWT

permutes T such that symbols with similar context are grouped together. Conceptually, the BWT

creates a matrixM consisting of all rotations of T . The rows in the matrix are then sorted based on
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the lexicographical ordering. T bwt refers to the last column ofM. The BWT is reversible in O(n)

time and can additionally be used to emulate search in a suffix array.

One of the main problems of constructing the BWT is that individual row comparisons inM, or

the equivalent suffix sorting comparisons in a suffix array construction algorithm can be computation-

ally expensive. Two suffixes are compared by iterating over T starting from each respective position.

In the worst case, each suffix comparison can take O(n) time. The k-BWT compares each row/suffix

up to a depth of k symbols while stable sorting the equal rows based on initial text positions. This

guarantees that each suffix comparison can be done in O(k) time. However, this implies that two

suffixes are considered equal if they share the same k-prefix. Equal suffixes are grouped together into

context groups. Inside a context group, suffixes are sorted based on their order in T , implying that the

suffix array positions in each context group are in monotonically increasing order. This essentially

creates a type of k-gram index which is often used for approximate pattern matching [Navarro, 2001]

which was discussed in Chapter 5.

6.2 The Variable Depth Transform

The k-BWT sorts each suffix up to a fixed depth of k. Figure 6.1 shows the context size distribution

for sorting depth k = 2 to 8. Note that as the sorting depth increases, the number of small contexts

also increases. However, even at a depth of 8, many large contexts groups remain which correspond

to substrings in T that have a length of 8. Instead of sorting all rows deeper, we sort only context

groups above a threshold v.

The k-BWT specifies the sorting depth k until the rows inMk are sorted. The incomplete sorting

ofMk results in rows inMk being grouped together in context groups. Each row in an individual

context group shares the same k symbol prefix. Instead of defining the sorting depth k, we define the

maximum context group size v in the matrix, now referred to asMv, allowed. We continue to sort

context groups containing more than v rows until all context groups contain at most v rows. This

implies that different parts of Mv can be sorted to different depths as not all k-grams in T occur

equally often. Figure 6.2 shows an example of the v-BWT. Context groups ‘p’ and ‘$’ are sorted up

to a depth 1. Context groups ‘ay’ and ‘yay’ are sorted to depth 2 and 3 respectively.

The bitvector Dv describing the context group boundaries of the v-BWT is now defined as shown

in Definition 8. Dv[i] is 0 if Dv−1[i] is 0 and the size of the context group containing row i in the

previous sorting stage (div−1) was smaller or equal to v or if the v-prefix of row i is equal to row i−1.

Dv[i] is 1 otherwise.

Definition 8 For any 1 ≤ v < n, let div−1 be the size of the context group containing row i after
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Figure 6.1: Context group size (logarithmic) distribution for different sorting depth k of the k-BWT

for a 200 MB English text file.

sorting step v − 1. Let Dv[0, n− 1] be a bitvector, such that Dv[0] = 1 and, for 1 ≤ i < n,

Dv[i] =



0 if Dv−1[i] = 0 and div−1 ≤ v,

0 if Dv−1[i] = 0 and div−1 > v and;

Mv[i][0, v − 1] =Mv[i− 1][0, v − 1],

1 otherwise.

The forward transformation of the v-BWT is outlined in Algorithm 1. We recursively perform

radixsort for each of the context groups until the context group size is less then our defined threshold

v. The algorithm returns the context group vector Dv, as well as the suffix array (SA) sorted up to

variable sorting depth. The duality between the BWT and suffix array is used to create T v-BWT as

T v-BWT[i] = T [SA[i]− 1].

In order to bound worst-case sorting time, additional parameters are necessary. Let kmin be the

minimum sorting depth for all context groups and let kmax be the maximum sorting depth. This guar-

antees a worst case runtime complexity of the forward transform using a standard radixsort algorithm

of O(kmaxn).
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i Dv LF F L
0 1 11 $ y a y a y a p y a y a
1 1 10 a $ y a y a y a p y a y
2 1 5 a p y a y a $ y a y a y
3 1 1 a y a y a p y a y a $ y
4 0 3 a y a p y a y a $ y a y
5 0 8 a y a $ y a y a y a p y
6 1 6 p y a y a $ y a y a y a
7 1 9 y a $ y a y a y a p y a
8 1 4 y a p y a y a $ y a y a
9 1 0 y a y a y a p y a y a $

10 0 2 y a y a p y a y a $ y a
11 0 7 y a y a $ y a y a y a p

Figure 6.2: v-BWT for T =yayayapyaya$ including LF mapping and the context-group vector for
threshold v = 3. The different sorting depths are boldfaced.

6.3 Reversing the Variable Depth Transform

The k-BWT can be reversed using the bit vector Dk marking the beginning of the context boundaries,

as contexts are required to be processed in reverse sequential order. The LF() mapping is only guar-

anteed to jump into the correct context group as discussed in Chapter 5. Similarly, Dv can be used to

reverse the v-BWT even though not all columns are sorted to the same depth k.

Lemma 3 The text T can be recovered from the permutation T v-BWT using the context group bound-

aries Dv and the LF() mapping.

Proof. Recall, Equation 5.1 (LF) counts the number of occurrences of c = T bwt[i] in T bwt[0, i].

If i represents the last row of a context group, the set of rows inM[0, i] is identical to the rows in

Mv[0, i] as the context groups are lexicographically sorted. Therefore the number of occurrences of

any c in T v-BWT[0, i] is the same as in T bwt[0, i]. The different sorting depths k′ and k′′ do not affect

the lexicographical order of different contexts, as the sorting depth can only affect the order within a

context group. So, j = LF(i) maps correctly between two context groups dik′ and djk′′ despite being

sorted to different depths k′ and k′′. As LF(i) must map to the correct preceding context group as in

the k-BWT, using Dv each context group can be processed in reverse sequential order to recover T .
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Algorithm 1 v-BWT Forward Transform of text T with threshold v.
1: VBWT (T [0 . . . n− 1], v)
2: Initialize SA[0 . . . n− 1]
3: Count symbols to create D1

4: for each context group D1[i . . . j] do
5: RADIXSORT (T, SA, D1[i . . . j], v, 2)
6: end for
7: for i← 0 to n− 1 do
8: if SA[i] = 0 then
9: T v-BWT[i]← T [n− 1]

10: else
11: T v-BWT[i]← T [SA[i]− 1]
12: end if
13: end for
14: return T v-BWT

FUNCTION RADIXSORT (T, SA, D[i . . . j], v, k)

1: if j − i+ 1 ≤ v or k ≥ kmax then
2: return
3: end if
4: COUNTSORT symbols in SA[i . . . j]
5: for all symbols ∈ SA[i . . . j] do
6: Mark start of new context group in D
7: RADIXSORT (T, SA, D[i . . . j], v, k + 1)
8: end for

To recover T from T v-BWT no additional information is required as the context boundaries Dv

can be recovered from T v-BWT in O(kmaxn) time, where kmax is the maximum sorting depth of any

context group in T v-BWT.

Lemma 4 Dv can be recovered directly from T v-BWT using no additional information.

Proof. Recall that context information is not needed to restore the first k columns ofMk. Instead of

recoveringMv to a depth of k, recovery is based on the number of rows, v, with an identical prefix

Mv[1...j]. Let t be the maximum number of rows inMv that have the same prefixMv[1...j] when

sorted to a depth of j. If the number of rows t with the same prefix exceeds v at the current sorting

depth j, this context group must be sorted up to depth j + 1. The recovery continues in the current

context group until t ≤ v. The final context group recovered is Dv.

We now give an example of how to recover Dv from T v-BWT. First, we recover F by sorting

L = T v-BWT and initialize D1 to the symbol boundaries. We also keep track of the F → L column
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mapping:

D1 1 1 0 0 0 0 1 1 0 0 0 0
F $ a a a a a p y y y y y
L a y y y y y a a a $ a p
FL1 9 0 6 7 8 10 11 1 2 3 4 5

Next, for all context groups larger or equal s = 3, we recover the next column inM using the

initial FL1 mapping. We update D2 to include the new context boundaries and use the initial FL1

mapping to create FL2[i] = FL1[FL1[i]] for context groups larger than v.

D2 1 1 1 1 0 0 1 1 0 0 0 0
F $ a a a a a p y y y y y

$ p y y y a a a a a
L a y y y y y a a a $ a p
FL2 0 6 7 8 10

Using FL2 we recover the next column for context groups larger than v in a similar manner:

D3 1 1 1 1 0 0 1 1 1 1 0 0
F $ a a a a a p y y y y y

$ p y y y a a a a a
$ p y y y

L a y y y y y a a a $ a p

We now have Dv as the size of all of the context groups less than or equal to v. Therefore we can

recover T from T v-BWT without the need to store any additional information.

6.4 Variable Length k-Gram Index

A k-gram (often called a q-gram in literature) is a contiguous sequence of symbols in a text T : T [i..`]

where `− i+ 1 = k. A k-gram index uses all k-grams in T to support approximate pattern matching

over the text [Navarro and Baeza-Yates, 1998]. Traditional k-gram indexes are based on inverted

files. For each distinct k-gram ki in T , a list of positions of all occurrences of ki are stored. These

lists can be d-gapped and compressed to reduce space. Individual inverted files are accessed through

the vocabulary, which can be represented using a data structure such as a trie [Navarro and Salmela,

2009]. In large text collections, k-gram indexes have limitations. First, the number of distinct k-

grams in T can grow exponentially with the size of k in the worst case. Second, certain k-grams tend

to occur much more frequently than others.



Variable Length k-Gram Index 157

Navarro and Salmela [2009] propose a variable length k-gram index, where each variable length

k-gram is required to have a uniform number of occurrences, and no k-gram occurs more than v

times. The index is prefix-free, so no selected k-gram can be a prefix of any other k-gram in the

index. To create the index, Navarro and Salmela first construct a suffix tree over T in O(n) time.

Next the suffix tree is traversed in depth-first order in O(n) time to retrieve the vocabulary of the

index by pruning the suffix tree at nodes whose subtree contains at most v leaf nodes corresponding

to suffix positions in T . Next, the position lists are sorted in increasing order in O(n log σ) time and

compressed in O(n) time. The total cost of constructing the index is therefore O(n log σ + n log v).

The v-BWT can significantly simplify the construction of a variable k-gram index. First, we create

T v-BWT of T with threshold v. In the process the following components of the k-gram index can be

created. The suffix tree partitioning of Navarro and Salmela [2009] can also be accomplished using

Dv since each context group contains at most v rows. The postings lists can be obtained implicitly via

SAv, the suffix array used to sort T . Within each context group, the suffix array positions correspond

to the entries in the postings list in the k-gram index. These lists are already sorted and do not require

the O(n log σ) sort described by Navarro and Salmela. In fact, we perform this step implicitly while

creating the partitioning. Additionally, the list can be recovered or searched from T v-BWT and a

sampled version of the corresponding suffix array.

6.4.1 Representing the Vocabulary

Traditional k-gram indexes consist of two main components: the vocabulary, stored as a trie or other

compressed dictionary representation [Brisaboa et al., 2011]; and, a compressed inverted file for each

distinct indexed k-gram containing all occurrences of the k-gram in T . To perform an approximate

pattern search, a pattern is split up into k + 1 substrings. Next, for each substring, the inverted

list is loaded by querying the vocabulary. Previously we showed how to obtain a variable k-gram

partitioning using the v-BWT. Here we show how we can replace the vocabulary of a variable k-gram

index with a wavelet tree over T v-BWT.

The v-BWT can be used to obtain a variable length k-gram partitioning equivalent to the index

proposed by Navarro and Salmela [2009]. Instead of using a trie to store the vocabulary, we can

instead perform a backwards search using a compressed wavelet tree over T v-BWT.

Lemma 5 Backwards search for any substring pi can be performed in T v-BWT as long as the number

of matching rows, [sp, ep] inMv is ≥ v.

Proof. Performing backwards search for a pattern up to length k works correctly in T kbwt as each

context is guaranteed to be sorted up to depth k. Therefore, performing k − 1 backwards probes is
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guaranteed to return the correct range of rows, sp, ep, inMk for any pi of length k. Similarly, every

context group dik corresponding to a prefixMv[0..j] is sorted if there are more than v rows inMv

prefixed byMv[0..j] in T v-BWT. Therefore, backwards search is guaranteed to result in the correct

sp, ep inMv if ep− sp+ 1 ≥ v.

Additionally, under certain conditions patterns occurring less than v times are also represented

continuously inMv.

Lemma 6 Backwards search for any substring pi = P [i . . . j] can be performed in T v-BWT as long

as the number of matching rows of the suffix of pi, P [i . . . j − 1] is larger than v.

Proof. Consider the construction algorithm discussed in Algorithm 1. During construction, suppose

context group Ci is currently sorted to k′ and contains more than v rows inMv. Thus the context

group is split into up to σ smaller context group sorted to depth of at least k′+ 1. Let Cj be a context

group resulting from the additional sorting step of Ci. If the number of rows in Cj is less or equal v,

the sorting procedure stops. However, within Cj all rows are still prefixed by the same k′ + 1 long

prefix. Thus, patterns P [i . . . j] are represented continuously inMv if the suffix P [i . . . j− 1] occurs

more than v times.

A wavelet tree over T v-BWT can be used to determine ranges inMv which correspond to substrings

pi of P . The size of the range corresponds to the number of occurrences of pi in T . For patterns with

less than v occurrences, the range in Mv is not guaranteed to be continuous if the pattern length

is longer than the sorting depth of the corresponding context group. For patterns with more than v

occurrences, the resulting range 〈sp, ep〉 has to cover multiple context groups. Each context group is

prefixed by pi. However, the text positions are only sorted in text positions within each context group

and not within the complete range sp, ep.

6.4.2 Optimal Pattern Partitioning

To search for a pattern P with at most Y errors, a k-gram index performs a filtering step whereby a

string P is split into Y + 1 substrings p1 . . . pY+1. For P to occur in a string T with at most Y errors,

at least one substring pi must appear in T [Navarro et al., 2001b]. A k-gram index is used to find all

candidate positions of P in T by partitioning P into Y + 1 substrings p1 . . . pY+1 and retrieving the

positions in T for all pi. Navarro and Baeza-Yates [1998] provide a dynamic programming algorithm

which calculates the optimal partitioning of P into Y +1 pieces to minimize the number of candidates.
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In the second step, a standard edit distance algorithm is then used to verify all candidates [Navarro

and Raffinot, 2002].

We now show how to use the optimal pattern partitioning algorithm proposed by Navarro and

Baeza-Yates [1998] and later used by Navarro and Salmela [2009] to enable approximate searching

using a wavelet tree over T v-BWT. The key intuition of Navarro and Baeza-Yates’s algorithm is to

compute all m2 possible substrings P [i − j] and the resulting candidate list lengths in a matrix

R[i, j] of size O(m2). Dynamic programming is then used to retrieve the optimal partitioning by

processingR inO(m2Y ) time [Navarro and Baeza-Yates, 1998; Navarro and Salmela, 2009]. Using

the backwards search (BWS) procedure, we compute R[i, j]:

R[i, j] =


|〈sp, ep〉| if BWS(P [i . . . j]) = |〈sp, ep〉| > v,

|〈sp, ep〉| if BWS(P [i . . . j]) = |〈sp, ep〉| ≤ v and

BWS(P [i . . . j − 1]) = |〈sp, ep〉| > v,

∞ otherwise.

Where 〈sp, ep〉 is the range in the suffix array prefixed by P . This range is only guaranteed

to be continuous under certain conditions discussed in Lemmas 5 and 6. All substrings for which

we cannot determine 〈sp, ep〉 are set to infinity in our calculations, thus making sure they are not

included in the final partitioning of P into pij , ..pj+1,l, ...pm−1. For each substring we retrieve the

corresponding 〈sp, ep〉 ranges in order to determine the parts of the suffix array containing the candi-

date positions. Using a wavelet tree to perform backward search increases the overall cost to compute

R to O(m2 log σ) as the number of occurrences (ep− sp+ 1) of all combinations of patterns P [i..j]

are determined using backwards search and stored in the cells R[i, j].

6.4.3 Storing Text Positions

Traditionally, the vocabulary contains pointers (file offsets) at which the individual postings list for

the indexed strings (k-grams) are stored. As we are using a wavelet tree to store the vocabulary,

we choose a different representation to store postings lists. Recall that within a context group in

T v-BWT, all corresponding suffix array positions are in ascending text order. We can therefore store a

compressed version SA′v of SA which d-gaps and compresses all offsets in a single context group in

the same manner as is often used in postings lists for inverted indexes.

Unfortunately, the ranges 〈sp, ep〉 in SAv cannot be used to find the corresponding position in

SA′v. So, we store an additional bitvector D′v that maps context groups in SA to the corresponding

starting positions in SA′v. First we calculate the distance of sp to the corresponding context group
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start in SAv using ` = rank(Dv, sp, 1) and t = select(Dv, `, 1). Next we map the context group

into the compressed representation SA′v using sp′ = select(D′v, t, 1). Starting from sp′ we skip the

first sp − ` encoded numbers and then retrieve the next ep − sp + 1 encoded positions of 〈sp, ep〉.
Note that 〈sp, ep〉 might span multiple smaller context groups which must each contain separately

compressed d-gap lists.

The vocabulary and all auxiliary information needed to perform optimal partitioning can be stored

using Hkmin
(T ) space – the cost of storing a wavelet tree over T v-BWT with a minimal sorting depth

of kmin. The text positions in SA′v use variable byte coding which uses up to 30% more space than

bit-compressed inverted lists, but allows for faster decoding time [Scholer et al., 2002]. Storing these

runs is similar to storing the runs in the ψ function of the compressed suffix array of Sadakane [2002],

which uses δ-codes [Elias, 1975] to store the d-gapped positions. We further store H0 compressed

representations of Dv and D′v [Raman et al., 2002].

6.5 Empirical Evaluation

In this section we evaluate the v-BWT transform itself, and a k-gram index using the transform. First

we investigate the running time of the forward transform. Next we investigate the performance of an

index based on the v-BWT when applied to approximate pattern matching.

6.5.1 Experimental Setup

In the experiments we again use the experimental setup described in Section 2.7. The forward

transform is implemented using the cache efficient radixsort string sorting approach proposed by

Kärkkäinen and Rantala [2008]. We modified the algorithm to account for the parameters kmin,

kmax and v as discussed above. As test data, we use a 1 GB prefix of both the DNA and WEB data

set described in detail in Section 2.7. We use the compressed suffix tree implementation provided

in the SDSL library to compare the constriction time of our variable depth index to the approach of

Navarro and Salmela. We further use the suffix sorting algorithm implemented in libdivsufsort

to construct the full BWT efficiently as a baseline.

6.5.2 Transform Performance

We first evaluate the runtime efficiency of our new transform and compare the forward transform with

the k-BWT and the full BWT. Table 6.1 shows the runtime performance to create T v-BWT, T kbwt and

T bwt respectively for both test files.
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Time [sec]
k-BWT v-BWT

BWT
3 5 9 5 50 500 5000

DNA 63 121 253 296 244 191 138 283
WEB 89 145 258 312 262 235 209 213

Table 6.1: Construction time (in seconds) of v-BWT, k-BWT, and the full BWT.

Time [sec]
Step suffix tree v-BWT

construct CST 736 -
suffix tree traversal 405 -
sort suffix array 453 -
create v-BWT - 224
build vocabulary 24
vbyte compress postings lists 30
Total 1648 278

Table 6.2: Construction cost comparison of the method by Navarro and Salmela and the v-BWT for
v = 50 on the DNA data set.

The bounded transforms perform better for DNA than for WEB compared to the full BWT. For

DNA, constructing the k-BWT is faster than constructing the full BWT. The v-BWT can be constructed

more efficiently for sorting depths up to 5. Note that for v = 5, the v-BWT is almost identical to the

full BWT, and only contexts up to size 5 remain. For v = 50 to 5000 the v-BWT can be constructed

even more efficiently. The WEB data set can be constructed 40% faster with the full BWT compared

to DNA. Induced suffix sorting reduces the number of suffix comparisons required to construct the

suffix array. Therefore, the number of suffix comparisons needed is the limiting factor. Longer

text comparisons have to be performed to determine the order of two suffix positions. The bounded

transforms also perform slower for WEB. For v = 5, the variable transform is 40% slower than

DIVSUFSORT. As the sorting depth decreases, the v-BWT again outperforms the full BWT.

6.5.3 Variable k-Gram Index Construction

The construction time of our variable k-gram-based index can be compared to the suffix tree method

of Navarro and Salmela [2009]. As described by Navarro and Salmela, we first construct a com-

pressed suffix tree using libsdsl [Gog, 2011]. Next we perform a depth first search traversal to

determine the highest nodes in the suffix tree that have at most v = 50 children. The ranges in the suf-
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Figure 6.3: Number of verifications required for k-BWT with k = 5 and v-BWT with v = 50 for the
DNA and WEB data sets.

fix array corresponding to the marked nodes are recorded. Lastly, the individual ranges in the suffix

array are sorted. We compare this approach to constructing an equivalent index using our v-BWT for

v = 50. The different steps required in addition to the time required to build an index for threshold

v = 50 for DNA are shown in Table 6.2. Note that the table further lists the cost to construct the

vocabulary and compress the individual postings lists.

As expected, the construction of the suffix tree is the main bottleneck in the method of Navarro

and Salmela. In fact, traversing the suffix tree to determine the different ranges in the suffix array for

the approach is more expensive than creating the entire index using the v-BWT transform. Sorting

each range in the suffix array in the suffix tree method is also computationally expensive, and unnec-

essary when using v-BWT. Overall, the v-BWT index can be constructed 5 times faster than the best

known k-gram approach.
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Figure 6.4: Number of verifications required for k-BWT for variable k = 3, 5, 9 and v = 5, 50, 500
for 2 errors for DNA and WEB data sets.

6.5.4 Variable k-Gram Verifications

All k-gram-based approximate pattern matching approaches use filtering to reduce verification costs.

Potential matching candidates must still be verified using an edit distance algorithm. The goal of the

filter is to minimize the number of verifications required to perform approximate search. We now

evaluate the number of verifications required by each indexing approach. First, we perform 1000

approximate pattern searches for pattern lengths 20 to 50 using different error levels. The patterns

were randomly sampled from each data set. Figure 6.3 shows the number of candidate positions

which must be verified after pattern partitioning is performed. For this experiment, we only compare

k = 5 and v = 50 using a wavelet tree as the vocabulary for both approaches. For DNA, the number

of positions requiring verification tend to be higher than for WEB as the data is more uniform, and the

alphabet size is smaller. The v-BWT always outperforms classical k-BWT partitioning. The variance

in the WEB data set is higher than for DNA, while DNA generally requires more verifications using

the k-BWT based approach. The v-BWT approach outperforms the k-BWT approach for the DNA data

set by several orders of magnitude except for patterns of length 20 with error rates of 3 and 4. This

implies that P has to be split into 4 and 5 substrings respectively. As the sorting depth for the k-BWT

is 5, we conjecture that the substrings being evaluated with the v-BWT are rarely longer than in the

k-BWT.

Next, we show how the number of verifications varies with different sorting parameters. We

choose only small k values as the number of potential dictionary entries can, in the worst case, grow

exponentially as k increases. Similarly, we choose the parameter v to have similar construction

costs as our chosen k values. Figure 6.4 shows the mean number of verifications required for 1000
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approximate pattern searches for patterns of length 20 to 50 for variable transform parameters. The

number of verifications required using the standard fixed k-gram k-BWT approach decreases as k

increases due to the fact that longer substrings can be matched. For k = 9, performance is similar to

that of the v-BWT for patterns of length 20. Generally, for all k the k-BWT approach requires more

verifications. The average number of verifications required stays roughly constant for the fixed k-

gram approach whereas the mean number of verifications decreases using the variable length k-gram

approach as the length of the pattern increases. As the pattern length increases, our approach can

match longer variable length k-grams during the optimal partitioning phase. Longer k-grams occur

less frequently. Therefore, the number of verifications required decreases.

Finally we evaluate the space usage of the variable depth index. We specifically compare the

size of the postings lists for different sorting depths for both the k-BWT and the v-BWT. Intuitively,

sorting to higher depths will result in less verifications at the cost of larger space usage due to the

smaller average context size. Smaller contexts contain shorter runs of increasing numbers which

can be compressed less efficiently. Figure 6.5 shows the trade-off between verifications required

compared to the space used to store the position information in the index. We compare patterns of

lengths 30, 40 and 50 while computing the verifications required for Y = 1. Overall the k-BWT-

based index requires more verifications while using less space. The variable depth-based transforms

for v = 5, 50, 500 use more space while requiring less verifications. For the WEB data set, the space

usage of the v-BWT are close to that of the k-BWT. As for the different sorting depths, large context

groups still exist. The difference in space usage is more visible for the DNA data set. Overall the

v-BWT-based index provides a new time and space trade-off compared to traditional k-gram indexes

while being able to be constructed efficiently.

6.6 Summary and Conclusion

In Chapters 4 and 5 we investigated the k-BWT and succinct-text indexes based on the transform.

We showed that context-bound text transformations and succinct text indexes based on these trans-

formations are viable alternatives to BWT-based indexes. In this chapter we focused on applications

of context-bound text transformations. We applied a new context-bound based sort transformation

– the v-BWT– to the problem of approximate pattern matching. We defined a parameter v which

specifies the maximum size of each context group Ci. If for a given sorting depth Ci is larger than

v, it is split up into smaller context groups until each context group contains at most v suffixes. Thus

context groups are sorted to different depths. We further defined minimum (kmin) and maximum

(kmax) sorting depth to bound the running time of the transform. Using the parameters v, kmin and
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Figure 6.5: Number of verifications required for k-BWT for variable k = 3, 5, 9 and v = 5, 50, 500
for Y = 1 error for DNA and WEB data sets compared to the space required to store the postings
lists.

kmax we showed the transform can be reversed similar to the k-BWT by recovering the context group

boundaries.

In Chapter 5 we discussed searching using the k-BWT. The k-BWT guarantees that the suffixes

prefixed by a pattern up to length k are continuous. The v-BWT provides several guarantees. All

patterns of length kmin occur continuously similar to the k-BWT. If a pattern occurs at least v times,

it is also guaranteed to be represented by a continuous range of suffixes. If pattern P [0..i] occurs less

than v times, but pattern P [0..i − 1] occurs more than v times the same guarantee applies. Thus the

search capability of the index are bound by the number of occurrences of the patterns.

We used the properties of the v-BWT discussed above in the context of pattern matching. Instead

of partitioning a pattern into Y + 1 pieces of length k, we partitioned the pattern into variable length

sub-patterns. The partitioning is determined by the dynamic programming algorithm of Navarro

and Baeza-Yates [1998] in conjunction with the backward search procedure over the v-BWT. Our

experimental evaluation showed that the transform can be used to construct variable length k-gram
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indexes faster than previous methods. We showed that the number of verifications that have to be

performed using a variable k-gram index is less than traditional fixed k-gram-based indexes. We

further showed that using wavelet trees over the transform output can be used as the vocabulary

component in the approximate index.

In this chapter we provided applications to non-BWT-based succinct text indexes in the context

of approximate pattern matching. We showed that our index can be a viable alternative to traditional

fixed k-gram-based indexes. In the next chapter we provide another study which applies succinct text

indexes in the area of IR. Specifically we compare a succinct text index-based document retrieval

approach to highly optimized inverted indexes on large, standard IR text collections.



Chapter 7

Information Retrieval Using Succinct
Text Indexes

Top-φ document retrieval algorithms are important for a variety of real world applications, including

web search, on-line advertising, relational databases, and data mining. Efficiently ranking answers,

based on relevance to queries, in large data collections continues to challenge researchers as the

collection sizes grow, and the ranking metrics become more intricate. Formally the top-φ ranked
document search problem is defined in Definition 3 in Chapter 1.

The most common index used to solve the ranked document search problem is the inverted index.

The inverted index consists of three main components, the vocabulary, the document store and the

postings lists. During index construction, each document in the text is segmented into an ordered set

of terms, stored into postings lists, and accessed via the vocabulary. A variety of time and space trade-

offs in regards to storing and accessing the main components of the inverted index exist [Zobel and

Moffat, 2006]. In general, during query time the postings lists are processed to determine the result

set. The processing of postings lists can be categorized into two basic approaches: term-at-a-time

(TAAT) and document-at-a-time (DAAT) query processing discussed in detail in Section 2.6.3.

Large memory systems also provide new opportunities to explore another class of indexing algo-

rithms such as the suffix array, to potentially improve the efficiency of various in-memory document

retrieval tasks [Manber and Myers, 1993; Muthukrishnan, 2002]. Specifically, compressed represen-

tations of the suffix array such as the FM-Index can reduce the space required for such an index to

that of the compressed representation of the input text [Ferragina and Manzini, 2000]. Recently, these

suffix-based indexes have been used to solve the document listing problem [Muthukrishnan, 2002] as

formally defined and discussed in Section 2.6.1.
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Thus, instead of indexing a monolithic text, suffix-based indexes have been used to process doc-

ument -based text collections. Recent research in this area has focused on the document listing

problem [Välimäki and Mäkinen, 2007]. In addition, several theoretically optimal and practically

efficient algorithms have recently been proposed to solve the top-φ most frequent document listing

problem [Culpepper et al., 2010; Hon et al., 2009].

In this chapter, we utilise suffix-based text indexes and auxiliary data structures to solve the

ranked document search problem. Specifically, we present a hybrid algorithmic framework for

in-memory bag-of-words ranked document retrieval using a self-index derived from FM-Indexes,

wavelet trees, and compressed suffix trees, and evaluate the various algorithmic trade-offs for per-

forming efficient in-memory ranked querying. Our contributions and the structure of this chapter can

be summarized as follows:

1. We propose a hybrid approach to solving a subset of important top-φ document retrieval prob-

lems – bag-of-words queries.

2. We present a comprehensive efficiency analysis, comparing in-memory inverted indexes with

top-φ self-indexing algorithms for bag-of-words queries on text collections an order of magni-

tude larger than any other prior experimental study.

3. To our knowledge, this is the first comparison of this new algorithmic framework for real-

istically sized text collections using a highly successful and widely used similarity metric –

BM25.

4. Finally, we describe how our algorithmic framework can be extended to efficiently and effec-

tively support other fundamental document retrieval tasks.

7.1 Document Retrieval

The research area of document retrieval is generally divided into two fields. From a practical per-

spective, inverted indexes have been used for many years in the IR community to provide search

results on a document level. From a theoretical perspective, Muthukrishnan [2002] reintroduced the

idea of document retrieval which has in recent years been a focus of research in the Stringology

community. Here we give a brief overview of document retrieval techniques used in this chapter.

We briefly review the similarity measure and inverted index-based retrieval techniques used in this

chapter in Sections 7.1.1 and 7.1.2. From the theoretical view of document retrieval, we discuss



Document Retrieval 169

the self-index-based approach we use in this chapter to compare against classic inverted index-based

document retrieval in Section 7.1.3.

7.1.1 Similarity and Top-φ Retrieval

In this chapter we focus on solving the top-φ document retrieval problem. As formally defined in

Definition 1, only the φ documents with the highest relevance are retrieved. The retrieved documents

are ordered based on a similarity measure S(q,Di). In this work, we focus primarily on bag-of-

words queries, so our baseline S(q,Di) ranking function is the widely used BM25 metric Robertson

et al. [1994b] defined and discussed in detail in Section 2.6.3. The metric uses the number of times a

query term occurs in a document (fqi,j), the number of document a term occurs in (fqi) and the size

of a document compared to the collection average to determine the relevance of a document to the

current query.

7.1.2 Inverted Index-based Document Retrieval

Traditional approaches to the top-φ ranked document search problem rely on inverted indexes. In-

verted indexes have been the dominant data structure for a variety of ranked document retrieval tasks

for more than four decades Zobel and Moffat [2006]. Despite various attempts to displace inverted

indexes from their dominant position for document ranking tasks over the years, no alternative has

been able to consistently produce the same level of efficiency, effectiveness, and time-space trade-

offs that inverted indexes can provide (see, for instance an extensive comparison of inverted indexes

and signature files Zobel et al. [1998]). We provide a brief introduction to inverted indexes in Sec-

tion 2.5.4.

To solve the top-φ ranked document search problem defined above, only the top-φ documents

are returned, and, as a result, researchers have proposed many heuristic approaches to improve the

efficiency of top-φ retrieval systems based on inverted indexes [Buckley and Lewit, 1985; Anh and

Moffat, 2002; Persin, 1994; Broder et al., 2003; Moffat and Zobel, 1996]. In Section 2.6.3 we dis-

cuss the main heuristics used in this chapter: WAND for DAAT processing and MAXSCORE for

TAAT query processing. Both heuristics are designed to allow early termination of the processing of

postings lists while not significantly affecting the quality – the effectiveness – of the retrieval system.

7.1.3 Succinct Text Index-based Document Retrieval

The FM-Index is the most common suffix array-based self-index [Ferragina and Manzini, 2000]. It

takes space equal to the compressed representation of the indexed text collection and can answer
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count queries in O(m log σ) time. The FM-Index is described in detail in Section 2.5.2. One of

the main components of FM-Index implementations is the wavelet tree [Grossi et al., 2003]. It effi-

ciently supports performing rank and select over sequences and is described in detail in Section 2.3.

Wavelet trees are a surprisingly versatile data structure, and have attractive time and space bounds for

many primitive operations in self-indexing algorithms [Ferragina et al., 2009; Gagie et al., 2012b].

In the context of document retrieval, we are specifically interested in operations supported by the

wavelet tree to efficiently retrieve the top-φmost frequent symbols in any range [i, j] of the sequence.

Culpepper et al. [2010] describe two algorithms using wavelet trees, GREEDY and QUANTILE, which

can efficiently retrieve the top-φ symbols in any range using a wavelet tree. In their experiments, they

found GREEDY to outperform QUANTILE. The algorithms are described in detail in Section 2.3.3.

A second data structure which does not rely on wavelet trees is the skeleton suffix tree structure

of Hon et al. [2009] which we refer to as HSV. Hon et al. [2009] create a suffix tree over T , and store

for specific suffix tree nodes the most frequent symbols corresponding to the subtree of the sampled

nodes. In essence, they create a new suffix tree which consists of several selected nodes of the original

suffix tree. The number of nodes and the number of values stored at each selected node is carefully

balanced to bound the space requirements of the structure. This process is described in more detail in

Section 2.6.2. The HSV structure can be used to bound the time to determine the top-φ most frequent

symbols in a range as follows. The selected nodes of the skeleton suffix tree are chosen to ensure that

at most 2g positions in any range of the selected sequence have to be processed at query time. The

parameter g is chosen at construction time and can be adjusted for different time and space trade-offs.

If the range [i, j] to be queried is larger than 2g, the HSV structure guarantees there to be a node in

the skeleton suffix tree which at least partially pre-stores values in [i, j]. Thus, even for larger ranges,

at most 2g cells are processed to retrieve the top-φ most frequent symbols. Section 2.6.2 describes

this process in more detail. Navarro et al. [2011] use HSV in combination with the efficient wavelet

tree top-φ approach of [Culpepper et al., 2010]. For small ranges smaller than 2g for which HSV

does not contain pre-stored values, the GREEDY approach is used to calculate the top-φmost frequent

symbols. For large ranges, the HSV structure guarantees that a sample point (at least partially) covers

the 〈sp, ep〉 range. This technique can be used to limit the work to be performed during query time

at the cost of storing the HSV structure.

Most document retrieval solutions additionally use the notion of the document array (DA). For-

mally DA is defined as:

DA[i] = j if SA[i] ∈ Dj .
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Figure 7.1: Given the text collection T = TATA$ATAT$TTAT$AATT$ of four documents, our self-
indexing system requires two wavelet trees. The first wavelet tree supports backwards search over the
BWT permuted text, and the second supports statistical calculations over the document array. Note
that only the items in grey are stored and used for query operations.

That is, DA[i] is j if the suffix at position i in SA occurs in document Dj . Many document retrieval

data structures solving the document listing problem using the document array are described in more

detail in Section 2.6. However, to our knowledge, none of these existing document retrieval algo-

rithms have been used to solve multi-pattern bag-of-words queries.

Using the techniques and data structures described above, we now describe our general approach

to in-memory indexing and retrieval to solve the top-φ ranked document search problem. Figure 7.1

shows the key components of our retrieval system: our system consists of (1) an FM-Index using a

wavelet tree over the BWT and (2) a wavelet tree over DA (WTDA). We also create the HSV structure

over T , storing the most frequent values from DA at each selected suffix tree node. In addition, our

system requires a Document Map to map document identifiers to human readable document names (or

URLs). No document cache is required and the original documents or snippets around each match

can be recreated directly from the FM-Index by extracting the required text positions using suffix

array sampling (a commonly-used technique described in Section 2.5.2). Only the items in grey are

stored and used for character-based top-φ document retrieval. All other components are shown for

illustration purposes only.

A simple bag-of-words search using a self-index retrieval system is outlined in Algorithm 2. The

algorithm consists of three stages: First, for each query term qi we determine the range 〈sp, ep〉
of suffixes which are prefixed by qi (Line 3). Second, we retrieve the top-φ documents within the

range 〈sp, ep〉 (Line 4). Third, for all query terms in q, we accumulate the document scores using

the accumulators A (Lines 6-14). This algorithm is analogous to TAAT processing (as each term is

processed one after the other), and is referred to as SELF-TAAT. Note that this algorithm is a simple

TAAT algorithm. However, we are not guaranteed to return the true top-φ result list as we process
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Algorithm 2 SELF-TAAT from a list of query terms qi ∈ q and a threshold φ return a list of φ
documents in rank order.
FUNCTION SELF-TAAT(q, φ)

1: Initialize a max-heap R← {}
2: for each query term qi in q do
3: Determine 〈sp, ep〉 for term qi using the FM-Index
4: Ai ← GREEDY(〈sp, ep〉, φ) . Calculate the top φ documents for qi
5: end for
6: for each query term qi in q do
7: for j ← 1 to φ do . Accumulate document scores for each qi
8: if Ai[j] ∈ R then
9: UPDATE(R,Ai[j], score)

10: else
11: ADD(R,Ai[j], score)
12: end if
13: end for
14: end for
15: return R[1 . . . φ]

FUNCTION GREEDY (〈sp, ep〉,φ)
1: `← WTd.root
2: h← PUSH(`, 〈sp, ep〉) . Init max-heap h sorted by size of range [sp, ep]
3: Initialize result list RES← {}.
4: i← 0
5: while h 6= ∅ and i < φ do . Traverse wavelet tree until we found φ documents.
6: `, 〈sp′, ep′〉 ← POP(h)
7: if ` is leaf then . new top φ document found
8: RES← ADD(`.docid, ep′ − sp′ + 1)
9: i← i+ 1

10: else
11: [s0, e0]← [rank(B`, sp′, 0), rank(B`, ep′, 0)] . map current range left and right
12: [s1, e1]← [rank(B`, sp′, 1), rank(B`, ep′, 1)]
13: if e0 − s0 > 0 then h← PUSH(`.left, [s0, e0])
14: end if
15: if e1 − s1 > 0 then h← PUSH(`.right, [s1, e1])
16: end if
17: end if
18: end while
19: return RES

each query term only up to a certain depth. Improving this limitation is discussed as part of the

experimental evaluation and is considered future work. Several variations of our general strategy

exist, which will be discussed next.
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Determining the Range 〈sp, ep〉

In the context of pattern matching using suffix arrays, the common notation to denote the range of

suffixes prefixed by the search pattern is 〈sp, ep〉. Recall that the sp and ep range for any string can

be found using the FM-Index part of our system. The 〈sp, ep〉 for each query term in Line (3) of

Algorithm 2 can be calculated in O(|qi| log σ) time using an FM-Index where σ is the size of the

alphabet of T . We refer to this approach as FM-Index based approach which we denote with the FM-
prefix.

A second approach that does not require the FM-Index during query time is described next. Ob-

serve that in typical bag-of-words query processing over English text, the size of the vocabulary is

often small relative to the total size of the collection. As such, we also present a new hybrid approach

to top-φ bag-of-words retrieval using a Term Map and WTDA. If we assume the vocabulary is fixed

for each collection, then the 〈sp, ep〉 range for each term can be pre-calculated and retrieved using

a term map, as in the inverted indexing solution. This means that the FM-Index component is no

longer necessary when processing bag-of-words queries. We refer to this approach as “sp-ep map”

(as a term is mapped to the corresponding range 〈sp, ep〉) which we denote with the prefix SEM- pre-

fix. Note that this approach reduces the overall space requirements of our approach, but also limits

the full functionality of some auxiliary operations. For example, the text can no longer be reproduced

directly from the index, so snippets cannot be generated on-the-fly, and phrase queries are no longer

natively supported.

Retrieving the Top-φ Documents

The second step in our bag-of-words succinct text index approach determines the top documents in

the 〈sp, ep〉 range for each query term. Here we discuss two alternatives explored in this chapter to

retrieve the top-φ documents for each range.

Algorithm 2 uses the GREEDY strategy of Culpepper et al. [2010] to traverse the wavelet tree

over DA(WTDA) to retrieve the top-φ documents. We refer to this approach with the suffix -GREEDY.

We do not evaluate the QUANTILE approach of Culpepper et al. [2010] as their experiments indicate

it is generally outperformed by GREEDY when φ is of reasonable size.

As a second approach we investigate augmenting the GREEDY approach with the HSV structure

discussed above and described originally by Navarro et al. [2011]. Instead of storing the top-φ most

frequent symbols in the skeleton suffix tree, we store the top-φ most important symbols sorted by

term impact for each interval g to improve effectiveness. In order to capture the φ-values commonly

used in IR systems (k = 10, 100, 1000), we pre-store values of any φ that are a power of 2 up to
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8192 in term contribution order. We further experimented with different sampling intervals g, and

storing only results for k = 10, 100, 1000. This affects the theoretical space guarantees of the HSV

method [Hon et al., 2009] but works well in practice. Note that we go higher than 1024 since the

values of φ′ necessary to ensure good effectiveness can be greater than the desired φ (which we

explore in our experimental evaluation). We refer to this skeleton suffix tree approach with the suffix

-HSV.

Evaluated Retrieval Techniques

Below we summarize the different succinct text index-based approaches evaluated in the chapter:

FM-GREEDY Uses the FM-Index to determine 〈sp, ep〉 and the standard GREEDY technique

of Culpepper et al. [2010] to retrieve the top document identifiers.

FM-HSV Uses the FM-Index to determine 〈sp, ep〉. For large ranges HSV pre-computed

top-φ values are used to answer queries. For query terms not completely cov-

ered by HSV, the standard GREEDY technique of Culpepper et al. [2010] is

used to retrieve the top document identifiers.

SEM-GREEDY Use a hash-table to determine 〈sp, ep〉 and the standard GREEDY technique

of Culpepper et al. [2010] to retrieve the top document identifiers.

SEM-HSV Use a hash-table to determine 〈sp, ep〉. For large ranges HSV pre-computed

top-φ values are used to answer queries. For query terms not completely cov-

ered by HSV, the standard GREEDY technique of Culpepper et al. [2010] is

used to retrieve the top document identifiers.

Alternative Self-Indexing Retrieval Techniques and Problems

It is also possible to support a DAAT query processing strategy in our retrieval system. The wavelet

tree over the document array (WTDA) supports Range Quantile Queries (RQQ). This operation allows

the traversal of any range in DA in document order at a cost of O(log d) per access (see Section 2.3.3

for a detailed explanation). Thus, in a range of sizem = ep−sp+1 containingm′ distinct document

identifiers, we can retrieve all document identifiers in document order in O(m′ log d) time.

Also note the current top-φ bag-of-words approach shown in Algorithm 2 is based entirely on the

frequency counts of each query term. This means that our current implementation only approximates
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the top-φ items. This is a well-known problem in the inverted indexing domain. This limitation holds

for any character-based bag-of-words self-indexing system that does frequency counting at query

time since we can not guarantee that item φ+ 1 in any of the term lists does not have a higher score

contribution than any item currently in the top-φ intermediate list. A method of term contribution

pre-calculation is required in order to support BM25 or language-model processing. Without the term

contribution scoring, WAND and MAXSCORE enhancements are not possible, and therefore every

document in the 〈sp, ep〉 must be evaluated in order to guarantee the final top-φ ordering. However,

this limitation can be mitigated by using HSV since we can pre-calculate the impact contribution

for each sample position and store this value instead of storing only the frequency ordering. Top-

φ guarantees are also possible using a term-based self-indexing system where each distinct term is

mapped to an integer using HSV or other succinct representations of term contribution preprocessing.

In future work, we intend to fully examine all of the possibilities for top-φ guarantees using self-

indexes in various bag-of-words querying scenarios.

When using character-based self-indexing approaches for bag-of-words queries, there is another

disadvantage worth noting: it is difficult to determine the unique number of documents (fqi) a query

term occurs in. For self-indexes, there is an efficiency trade-off between locating the top-φ fqi,j values

and accurately determining fqi since the index can extract exactly φ fqi,j values without processing

every document. For a fixed vocabulary, fqi is easily precomputed, and can be stored in the term map

with the 〈sp, ep〉 pairs. But, in general it is not straightforward to determine fqi for arbitrary strings

over WTDA without auxiliary algorithms and data structures to support calculating the value on-the-

fly. The FM-HSV approach allows us to pre-store fqi for each sampled interval which can be used

to calculate fqi over 〈sp, ep〉 more efficiently by only processing potential fringe leaves. Calculating

fqi using only WTDA for arbitrary strings in near constant time using no additional space remains an

open problem. To our knowledge, using a wavelet tree is the most efficient approach for performing

fqi range quantile queries in O(fqi log d) time.

7.2 Empirical Evaluation

In order to test the efficiency of our approach, two experimental collections were used. For a small

collection, we used the TREC 7 and 8 ad hoc datasets. This collection is composed of 1.86 GB

of newswire data from the Financial Times, Federal Register, LA Times, and Foreign Broadcast

Information Service, and consists of around 528,000 total documents [Voorhees and Harman, 1999].

For a larger in-memory collection, we used the TREC WT10G collection. This collection consists of

10.2 GB of markup text crawled from the internet, totalling 1,692,096 documents [Hawking, 1999].
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For our baselines, we have implemented the in-memory variant of WAND as described by Fon-

toura et al. [2011] for DAAT, and an in-memory variant of MAXSCORE for TAAT. Experiments were

run on our LARGE test machine described in Section 2.7.1. Times are reported in milliseconds unless

otherwise noted. All efficiency runs are reported as the mean and median of 10 consecutive runs of a

query, and all necessary information is preloaded into memory with warmup queries.

Note that we do not carry out a full evaluation of the effectiveness of the retrieval systems pre-

sented here. In previous work, it was shown that the BM25 ranking and query evaluation framework

used in our approach can be as effective as other state-of-the-art open source search engines when

an exhaustive retrieval is performed. We thus do not repeat those experiments here [Culpepper et al.,

2011]. To achieve this, a larger number of documents φ′ > φ is retrieved. For exhaustive retrieval,

φ′ = d where d is the total number of documents in the collection. In our experiments, we use

the minimum φ′ values that result in retrieval performance that is comparable to the effectiveness

obtained through exhaustive processing. In all experiments we use φ′ = 8 ∗ φ for the TREC 7 & 8

dataset, and φ′ = 2 ∗ φ for the TREC WT10G dataset. These values for φ′ give results for the MAP and

P@10 effectiveness measures that are not statistically significantly different compared to exhaustive

processing, for both collections (paired t-test, p > 0.05).

7.2.1 Experimental Setup

The queries used in our experiments were extracted from a query log supplied by Microsoft. Each

query was tested against both TREC collections, and the filtering criteria used was that every word

in the query had to appear in at least 10 distinct documents, resulting in a total of 656,172 unique

queries for the TREC 7 & 8 collection, and a total of 793,334 unique queries for the TREC WT10G

collection. From the resulting filtered query sets, two different query samples were derived.

First, 1000 queries of any length were randomly sampled from each set, to represent a generic

query log run. The 1,000 sampled queries for TREC 7 & 8 have an average query length of 4.224,

and the average query length of the WT10G sample set is 4.265 words per query. For the second set of

experiments, 100 queries for each query length 1 to 8 were randomly sampled from the same MSN

query sets.

Table 7.2 shows the statistical properties of the sampled queries that were used in the second

experimental setup, including the average number of documents returned for each query for each

query length, and the average length of postings lists processed for each query.
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Query length
TREC 7 & 8 queries TREC WT10G queries

Total Matches Avg Processed Total Matches Avg Processed
|q| Queries (’000) (’000) Queries (’000) (’000)
1 100 9.9 9.9 100 3.3 4.7
2 100 24.8 12.5 100 68.6 42.5
3 100 104.5 38.5 100 292.8 123.2
4 100 238.1 69.0 100 601.1 166.6
5 100 351.2 95.1 100 866.5 228.5
6 100 408.7 107.8 100 1041.9 280.4
7 100 463.8 126.2 100 1149.7 319.6
8 100 489.8 148.3 100 1171.8 339.2

random sample 800 234.9 70.0 800 621.5 181.2

Table 7.2: Statistics of the queries used in experiments (sampled based on query length, or sampled
from the filtered MSN query log), reporting the number of queries run, the mean number of documents
that contained one or mor of the query terms, and the mean length of the inverted lists processed.

7.2.2 Average Query Efficiency

In order to test the efficiency of our algorithms, two experiments were performed on each of the

collections. The first experiment is designed to measure the average efficiency for each algorithm,

given a sampling of normal queries. For this experiment, the length of the queries was not bounded

during sampling, and had an average query length of just over 4 words per query as mentioned in

Section 7.2.1.

Figure 7.2 shows the relative efficiency of each method averaged over 1,000 randomly sampled

MSN queries for TREC 7 & 8, and TREC WT10G. Each boxplot summarizes the time values as follows:

the solid line indicates the median; the box shows the 25th and 75th percentiles; and the whiskers

show the range, up to a maximum of 1.5 times the interquartile range, with outliers beyond this

shown as separate points. In both figures, the following abbreviations are used for the algorithms:

FM-GREEDY (FM), SEM-GREEDY (SE), FM-HSV (FM-H), SEM-HSV (SE-H), DAAT, and TAAT.

The following observations can be made. There is no noticeable difference between the perfor-

mance of the FM- and SEM- methods. Thus, the FM-Index retrieves the 〈sp, ep〉 ranges as fast as the

hash table. On the other hand, the hash table is equally fast, and can thus replace the FM-Index if the

additional functionality provided by the FM-Index is not required. The identical performance can be

explained by the fact that the hash table always performs at least one string comparison (or more in

the non-optimal case) to compare the query term qi to the current hash table entry. The FM-Index

performs |qi| log σ binary rank operations to retrieve the range. The difference in lookup cost does
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Figure 7.2: Efficiency for 1,000 randomly sampled MSN queries against the TREC-7/8 and WT10G

and collections.

not contribute to the query performance of the different methods.

For φ = 10, the self indexing methods FM-GREEDY and SEM-GREEDY perform similar to DAAT

and outperform the TAAT baseline for both data sets. The HSV-based methods outperform all other

methods for φ = 10 and φ = 100. While the median performance is similar to that of DAAT, the lack

of outliers is noticeable for both baselines. Further evaluation of the performance of the HSV-based

methods indicated that for small values of φ, almost all queries directly correspond to the sampled

nodes in the skeleton suffix tree. This can be explained by the way the nodes are chosen. The nodes

are chosen by performing lowest common ancestor (LCA) operations in the suffix tree. For our text

collections, and we conjecture for many natural language text collections, these sampled LCA nodes

correspond to word boundaries. We conjecture that this is due to the fact that words tend to repeat

often in natural language text. Thus, large ranges of the suffix array of the text collections are prefixed

by words. Performing LCA operations within such a range results in a node being marked which

corresponds to the word boundary. Therefore the HSV method performs well in our experiments as

many queries can directly be answered by retrieving pre-stored value lists.

Interestingly, for φ = 1000, the HSV method is outperformed by DAAT. This can be explained
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using a similar argument as above. As discussed in Section 2.6.2, the sampled nodes in the HSV

structure are selected based on the parameter g. The nodes are selected by computing the lowest

common ancestor of the two leaves g apart in the suffix tree. Thus node lca(sa[i], sa[i + g]) is

selected and values are pre-stored. However, to ensure the space-bounds of the structure, g is defined

as g = φ log2+ε n. Thus, the nodes selected depend on φ, which implies for larger values of φ, less

nodes are sampled. In our experiments, for φ = 1000, the sample range g of the HSV structure was

larger than the word boundaries in the text collection, which caused the performance of the HSV-

based index types to degrade as φ increased, due to the fact that less query terms can directly be

answered using the HSV structure. If queries cannot be answered using HSV, the method degrades to

using FM-GREEDY to retrieve the φ results for each query term.

Similar to the HSV structure, the regular GREEDY-based techniques also perform worse for larger

φ values. The performance of the GREEDY technique only depends on the processing within the

document wavelet tree, WTDA. The depth of WTDA increases as the number of documents in the

collection (d) increases as the height of the wavelet tree is log d. In the case of the TREC WT10G

collection, which contains around 1.6 million documents, the depth of the wavelet tree is 24. The

amount of work to be performed by GREEDY depends on (1) the height of WTDA(2) the number of

unique elements in 〈sp, ep〉 and (3) the desired number of elements, φ, to be returned.

We first focus our discussion on (2), the number of unique elements in the range. The number

of unique elements in the 〈sp, ep〉 range corresponds to the number of documents containing the

query term. In the context of relevance, query terms occurring in many documents are considered

less important to the similarity measure. Consider the BM25 metric defined in Section 7.1.1. The first

term,
(
d−fqi+0.5

fqi+0.5

)
, in the equation weights a query term qi less, as the number of times the term

occurs in the collection (fqi) increases. For example, the term “the” occurs in almost all English

texts, and thus is considered less important by BM25. This can be translated to the processing of the

wavelet tree. Query terms which require large parts of the wavelet tree to be processed are often

irrelevant to the overall relevance ranking process. In the context of inverted indexes, these terms are

often referred to as stop words, which are excluded from the index during construction time.

Last we discuss how φ affects the run-time performance of GREEDY. Recall that for, φ = 1000,

the GREEDY method is outperformed by both DAAT and TAAT processing for both test collections.

To explain the drop in run-time performance for GREEDY, we examine the way the method traverses

the WTDA to return the φ most frequent documents within 〈sp, ep〉. The algorithm starts by mapping

the range to corresponding ranges rleft and rright of both the left and right subtree of the root node.

Using a max-heap, the larger of the two mapped ranges is processed next. Each processing step

maps the current range to the corresponding ranges of the children within the current node. The
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algorithm is greedy as the largest currently available range always is processed next. The most

frequent symbol/document is encountered the first time a range is mapped to a leaf node. The process

continues until φ leaf nodes have been visited. Thus, the processing for φ = 1000 stops after 1000

leaf nodes are visited. However, this does not limit the number of nodes within WTDA to be processed.

Assume every element in 〈sp, ep〉 occurs only once which would requireO((sp−ep+1) log d) time.

For natural language text, only few documents contain a query term often. Most documents contain

each query term only a small number of times. This case is very similar to the worst case described

above, which requires large parts of the wavelet tree to be processed. This explains the degraded

performance of the GREEDY method as φ increases. Interestingly, this could be used to create an

approximation technique such as WAND. For example, continue processing the wavelet tree until all

ranges are smaller than a certain threshold. Below the threshold it is guaranteed that the returned

document will not be in the φ most relevant documents. We plan to explore this idea in future work.

In general, the WAND variant of DAAT is more efficient on average, but can perform poorly

for certain queries (see outliers in Figure 7.2). For example, the query “point out the steps

to make the world free of pollution” on the WT10G collection consistently performed

poorly in our DAAT framework. This can be explained by the fact that many of the query terms have

very similar impact (first term in the BM25 formula) which makes skipping using WAND difficult as

many parts of the postings lists can not be skipped and have to be processed completely. As discussed

by Fontoura et al. [2011] we find that DAAT processing can be performed more efficiently than TAAT

using in-memory inverted indexes.

7.2.3 Efficiency Based on Query Length

We now break down the efficiency of each of our algorithms relative to two parameters: φ and |q|,
where |q| is the number of terms in a query. Figure 7.3 shows the average of 10 runs of 100 queries per

query length, |q|. For one-word queries, for all values of φ, the inverted indexing approaches DAAT

and TAAT are superior. This is not surprising since only a single term posting must be traversed

to calculate BM25, and the algorithms have excellent locality of access. Still, the HSV variant is the

most efficient for small φ. For |q| > 1, the results also depend on φ. For φ = 10 and φ = 100,

the self-indexing methods are more efficient than TAAT since the methods can efficiently extract the

still relatively small φ′ values. The WAND-based DAAT method remains remarkably efficient for all

values of φ. As φ increases, the performance of the HSV-based approaches begin to degrade. The

performance degradation at large φ′ is as outlined in Section 7.2.2. Most of the 〈sp, ep〉 ranges turn

out to be much smaller than any of the samples, as the sample rate depends on φ′. So, the complete
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Figure 7.3: Efficiency of query length of 1 to 8 on the TREC 7 & 8 collection (top row) and TREC
WT10G collection (bottom row) for φ=10,100 and 1000. For each query length, 100 randomly sampled
queries are used from the MSN query log set.

〈sp, ep〉 range must be computed at runtime, reducing the performance to FM-GREEDY when an

appropriate sample is not available. Note that the performance of HSV for TREC 7 & 8 is worse than

for WT10G as φ′ is four times larger in TREC 7 & 8 resulting in fewer sample points.

7.2.4 Space Usage

We now address the issue of space usage for the different algorithmic approaches. Inverted indexes

are designed to take advantage of a myriad of different compression techniques. As such, our base-

lines also support several state-of-the-art byte- and word-aligned compression algorithms [Moffat

and Anh, 2005; Trotman, 2003; Yan et al., 2009]. When we report the space usage for an inverted

index, the numbers are reported using compressed inverted indexes and compressed document col-

lections.

Figure 7.4 presents a break-down of space usage for each component of the inverted indexing and

self-indexing approaches. From a functionality perspective, there are several different componentiza-

tion schemes to consider. First, consider the comparison of an inverted index method (including the
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term map, the postings list with position offsets, the document map, and the compressed document

cache) with an FM-Index (including WTDA, the document map, and any other precomputed values

– for instance the HSV enhancement). We consider these two in-memory indexes as functionally

equivalent, as both can support bag-of-words or phrase queries, and can recreate snippets or even the

original uncompressed document. The self-index variant (FM or FM-H) is significantly larger, but

able to support a range of special character and arbitrary sub-string queries that term-based indexes

do not support. The second alternative are indexes that support only bag-of-words queries. Now,

an inverted index method requires only the term map, the postings list without position offsets, and

the document map. The succinct text index methods are essentially the same (SE or SE-H), but the

FM-Index component is replaced with a term map component. For space usage across all succinct

text index-based approaches, the most expensive component is WTDA. The size of the document

wavelet tree increases with the number of documents in the collection. While previous work exists

on evaluating various trade-offs for compressing WTDA [Navarro et al., 2011], we currently do not

compress WTDA because all of the known approaches can have a substantial impact on the overall

efficiency of key operations.

When considering all of the current self-indexing options presented here, using an FM-Index

component instead of a term map offers the most functionality but requires more space than the
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term-map-based index.

7.3 Summary and Conclusion

In this chapter we considered the application of succinct text indexes to in-memory bag-of-words

query processing. Generally, answering bag-of-words queries is computationally more expensive for

text indexes as the results of multiple query terms have to be combined using a similarity measure

during query time. Sophisticated query processing strategies such as WAND are used to efficiently

answer bag-of-words queries using inverted indexes. To our knowledge, answering bag-of-words

queries efficiently using a succinct text index-based document retrieval framework has previously

been unexplored. To evaluate the performance of a search system processing bag-of-words queries,

both the efficiency and the effectiveness of the index have to be evaluated. Effectiveness describes

the quality of the returned results when compared to a gold-standard answer set. In IR, effectiveness

is generally evaluated using standardized text collections. One of the obstacles in using succinct

text indexes for IR tasks is the size of widely used text collections. In this chapter we use succinct

text indexes to index two standard text collections up to 10 GB in size. Thus, we index data sets

larger than commonly used in the field of succinct data structure research. Using these standard text

collections, we evaluated and compared our succinct text index-based document retrieval indexes to

academic standard invert indexing algorithms. To be competitive, our succinct text indexes use the

engineered implementations and optimizations discussed in Chapter 3.

Our succinct text index-based document retrieval framework consists of multiple components.

We used a FM-Index [Ferragina and Manzini, 2000] or alternatively a term-map to determine the

range of suffixes prefixed each query term. Both alternatives provide different trade-offs. The term-

map is more space efficient; however, the FM-Index provides additional functionality. The FM-Index,

allows, for example, performing phrase queries of any length or extracting any arbitrary substring of

the original text collection efficiently. To process the ranges of the matched suffix positions we the

HSV structure [Hon et al., 2009] in conjunction with a wavelet tree [Grossi et al., 2003] over the

document array as suggested by Navarro et al. [2011]. The document array consists of a one-to-

one mapping between each suffix position and its corresponding document number. If the range of

suffix positions is large, the HSV structure is used to retrieve the pre-calculated top-φ most frequent

documents. Otherwise, the wavelet tree is traversed using the GREEDY algorithm [Culpepper et al.,

2010] to calculate the top-φ most frequent documents within the range on-the-fly.

Comparing our approach to that of Navarro et al. [2011], we introduced several changes to ac-

count for bag-of-words queries. First, instead of pre-storing results in frequency order in the HSV
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structure, we stored each list in impact order [Anh and Moffat, 2006]. Thus, entries contributing

more towards the final score of a document are ranked higher in the pre-stored result list. Second,

instead of retrieving and storing φ results, we store and retrieve the top-φ′ results. This is required

to ensure that the results generated by our succinct text index framework are statistically identical to

those generated by the invert index-based systems.

Our empirical evaluation showed that our succinct text index-based document retrieval frame-

work can be competitive to inverted index-based systems. For small φ, queries can be answered

efficiently using the HSV structure. As φ becomes larger, the efficiency of our approach deteriorated

as less queries can be resolved using the HSV structure. This is especially problematic as instead of

retrieving φ results, we were required to retrieve up to φ′ = 8 ∗ φ to ensure result quality in terms of

effectiveness. Inverted index-based query processing algorithms such as WAND avoid this problem

by not processing low impact postings lists. However, similar techniques currently do not exist in our

succinct text index-based framework. This shortcoming makes our approach only viable for small φ

when answering bag-of-words queries. The construction of our self-indexes is problematic for large

collections, and deserves further study. In particular, constructing the HSV structure, which requires

a suffix tree (or compressed suffix tree), currently limits the applicability of our approach. From an

efficiency perspective, constructing the self-index structures, especially HSV, is largely unexplored.

Despite the limitations of our approach discussed above, we believe that succinct text indexes can

provide interesting new avenues of research in the field of IR. Using FM-Indexes to perform inex-

pensive phrase queries and on-the-fly snippet extraction are apparent benefits of succinct text indexes

which can make traditional search systems more powerful. In this chapter we provided evidence that

succinct text indexes can operate efficiently on the scale required to perform IR experiments. To make

succinct text index-based solutions more competitive, partial processing techniques such as WAND

have to be adopted in our document retrieval framework. We consider this as well as reduction of

construction cost as the two outstanding important problems for the wider adoption of succinct text

indexes in IR.



Chapter 8

Conclusion and Future Work

In this chapter we discuss our contributions in the context of the our initial problem statements and

research questions, as well as potential new research directions and future work. In Section 8.1 we

discuss several open problems and extensions of our work. To conclude, we provide a summary of

our contributions in Section 8.2 where we reflect on our contributions with regards to the intentions

of this research project.

8.1 Future Work

Here we discuss several avenues of future work: we discuss problems related to constructing and

parallelizing succinct data structures; applying the k-BWT and the v-BWT in the context of Bioinfor-

matics and, the usefulness of self-indexes in the context of Information Retrieval.

8.1.1 Construction and Parallelism of Succinct Data Structures

In Chapter 3 we focused on techniques to optimize the performance of succinct data structures. Our

analysis showed that careful use of, modern CPU instructions and operating system features can sub-

stantially increase the run time performance of succinct data structures. The same techniques can

also be applied during the construction of succinct data structures. For example, initial experiments

showed that enabling huge pages during the construction of a suffix array decreases the construction

cost by 30%. In Chapter 3 we further showed that using modern CPU instructions and bit-parallelism

during construction can substantially decrease the construction cost of wavelet trees and select oper-

ations on bitvectors. Applying the techniques we described in Chapter 3 to the construction phase of

other succinct data structures can make succinct data structures, and specifically succinct text indexes,
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feasible for use on larger data sets.

It is generally accepted that single thread performance and clock speed will no longer increase

substantially in the near future [Sutter, 2005]. Sutter is predicting a fundamental shift in software de-

velopment focusing on concurrency and parallelism. In fact, constructing suffix arrays in parallel has

been an active area of research [Kulla and Sanders, 2007; Deo and Keely, 2013]. The parallel perfor-

mance of succinct data structures and specifically succinct text indexes remains, to our knowledge,

unexplored. Cache-efficient rank , select and wavelet tree processing will be able to substantially

improve the performance of succinct text indexes accessed in parallel. We further believe that many

operations on succinct text indexes such as extracting parts of the original text can efficiently be

parallelized.

8.1.2 Context-Bound Text Transformations

In Chapters 4 and 5 we discussed different aspects of a context-bound text transformation: the k-BWT.

The k-BWT is created by sorting of all k-grams in the original text in lexicographical order. In the

context of Bioinformatics, such k-grams are often referred to as k-mers and are widely used in many

Bioinformatics research tools used practice [Altschul et al., 1990; Hazelhurst and Liptk, 2011]. In

some cases, these tools construct the full suffix array, only to unsort the individual k-groups to retrieve

SAk [Hazelhurst and Liptk, 2011]. An interesting extension to our work would be to explore using

the k-BWT in conjunction with our results on searching in T kbwt, to decrease the space requirements

and increase the run-time performance of tools such as WCD-EXPRESS, used to cluster Expressed

Sequence Tags [Hazelhurst and Liptk, 2011]. Reduced space requirements would in turn enable such

tools to scale more efficiently on larger data sets.

A second open problem is induced suffix sorting using only a limited depth k. In Chapter 4 we

discussed an initial attempt to use the method of Itoh and Tanaka [1999] to induce the correct k-order

of all suffixes. However, each induction step increases the sorting order of the induced position by

one. Thus we keep track of suffixes which have incorrect sorting order to correct them in a later step

of the algorithm. This negates all savings from having to sort only 50% of all suffixes. We expect

that it would be possible to use induced suffix sorting to construct the k-BWT more efficiently than

the radixsort-based method of Kärkkäinen and Rantala [2008].

8.1.3 Self-Indexes for Information Retrieval

In Chapter 7 we applied succinct text indexes to the top-φ ranked document retrieval problem. In our

experimental evaluation, we showed that self-indexes can be competitive when compared to inverted
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indexes. One of the main problems of self-indexes is the fact that the top-φ most frequent documents

for a query term are not guaranteed to retrieve the top-φ most relevant documents for a bag-of-

words query. Inverted indexes use advanced postings list processing algorithms such as WAND or

MAXSCORE to decide the number of documents have to be processed to retrieve the correct top-φ

most relevant documents for a query. Unfortunately, these algorithms are not directly transferable

to self-index-based top-φ retrieval. To achieve comparable effectiveness in our experiments we were

required to retrieve up to 8 times the number of top-φmost frequent documents (that is φ′ = 8∗φ) for

each query term. Especially for large φ, the work performed by our succinct text indexes increased

substantially, making them less competitive than state-of-the-art inverted indexes. Thus, retrieving

the top-φ most relevant documents for a standard bag-of-words query efficiently remains an open

problem. Potential solutions include adopting inverted index-based techniques such as WAND to the

self-indexing document retrieval framework.

Self-indexes can answer phrase queries efficiently. In contrast, inverted indexes require auxiliary

data structures such as a nextword index [Williams et al., 1999]. Similarly, using an inverted index

for non-term-based collections such as East Asian language text requires complex segmentation al-

gorithms to parse the text into a sequences of terms [Nie et al., 2000]. Self-indexes do not have such

a requirement. Other tasks which can be performed more efficiently using succinct text indexes, such

as on-the-fly snippet extraction or sequential/full dependence Markov random field models [Metzler

and Croft, 2005], are again computationally expensive using inverted indexes. In the experiments that

we performed in Chapter 7, we used a set of collections that were used in IR evaluation 10 years ago.

This set of collection is considered large in the area of succinct text indexes today. However, these

same collections are deemed relatively small in the context of IR research, where today, common

collections such as CLUEWEB09 Category B contain 50 million English web pages, or 230 GB of

compressed text. These collections are used in many IR evaluations as a variety of relevance judge-

ments and reference queries exist. As a result, indexing large collections such as CLUEWEB09 is a

prerequisite to investigating, for example, the use of phrase queries or advanced dependency models

using self-indexes. In short, scaling succinct indexes to enable the indexing of large standard IR test

collections is necessary for the viability of succinct data structures in Information Retrieval.

8.2 Conclusion

The scalability of succinct text indexes is one of the main aspects hindering the wider adoption of

suffix-based indexes in practice. While inverted indexes can index terabyte-size data sets, suffix-

based indexes are currently able to only index comparably smaller data sets. This research project
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investigated ways to improve the scalability of succinct text indexes to index large data sets. Specif-

ically, we investigated two aspects relevant to enabling scaling succinct text indexes: construction

cost and designing succinct data structures for large-scale data sets. Here we discuss and summarise

our contributions and relate them to our initial aim of the research project.

Traditionally the suffix tree and suffix array were used to solve the exact pattern matching prob-

lem [Weiner, 1973; Manber and Myers, 1993]. However, they require space equivalent to many times

that of the original text being indexed. Succinct data structures emulate the functionality of a regular

data structure in space equivalent to the compressed representation of the underlying data. In this

connection, succinct text indexes use space equivalent to the size of the compressed data set to be

indexed, while allowing searches to be performed at the same efficiency of a regular text index such

as the suffix array. The key insight used by suffix-based succinct text indexes is the fact that the suffix

array can be replaced by more compressible representations such as the Burrows-Wheeler Transform

(BWT) while providing the same functionality [Ferragina and Manzini, 2000]. Unfortunately, both

the FM-Index of Ferragina and Manzini [2000] and the Compressed Suffix Array of Sadakane [2002]

require the complete suffix array to be available during construction time. Thus the space required at

construction time is much larger than during query time. Construction is therefore a major bottleneck

prohibiting the scalability of succinct text indexes to larger data sets.

To alleviate the prohibitive cost of constructing the suffix array during index construction we

focused on alternative representations which can be substituted to eliminate the need to construct

the full suffix array. In Chapter 4 we revisited a partial sorting, up to a certain depth k, of all suf-

fixes. Specifically, we investigated the k-BWT [Schindler, 1997; Yokoo, 1999], a derivative of the

BWT which used to emulate searching over a suffix array in the FM-Index. Unlike the BWT, the

k-BWT sorts suffixes only partially. However, we found that it can be compressed without substantial

loss in compression effectiveness even for small k. We additionally discovered that the k-BWT can

be recovered faster than the BWT due to a previously undetected cache-effect. This was surprising,

as reversing the k-BWT requires additional work to recover the context group boundaries which are

needed to reconstruct the original text. Most importantly, we discovered that the k-BWT can be con-

structed more efficiently than the BWT. For small k, a fast radixsort [Kärkkäinen and Rantala, 2008]

algorithm can construct the k-BWT faster than state-of-the-art suffix array construction algorithms.

Similarly, we proposed a simple external k-BWT construction algorithm which can construct the k-

BWT more efficiently in external memory than comparable state-of-the-art external BWT construction

algorithms. For this reason, succinct text indexes using the k-BWT instead of the BWT can be built

over larger text collections and are thus potentially more scalable.

The FM-Index is one of the most popular succinct text indexes [Ferragina and Manzini, 2000].
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It relies on emulating the suffix array using the BWT. To support search, the FM-Index uses the

backward search procedure to locate patterns in original text by performing rank queries over the

BWT. This is possible due to a duality between the suffix array and the BWT. In Chapter 5 we

investigated replacing the BWT with the k-BWT, while still providing operations commonly supported

by succinct text indexes. We found that due to the incomplete lexicographical ordering of the k-BWT,

search is only guaranteed to return the correct results for patterns up to length k. For patterns larger

than k, each occurrence position has to be processed individually. We prove, that function LF can

be performed at any arbitrary position in the k-BWT by using additional auxiliary data structures.

We only use a constant number of extra rank and select operations compared to performing LF over

the BWT. The function is used internally by all operations of the FM-Index. Thus our contribution

allows, for example, the extraction of any arbitrary substring of the original text from the k-BWT. In

the context of search, we elucidate another useful property of the k-BWT: within a context group,

each pattern occurrence is implicitly stored in increasing text order. This is especially useful when

performing position restricted text searches. Overall, we found that searching for patterns of length

k can be performed at no extra cost using a k-BWT based FM-Index. This is useful in the field of

Bioinformatics, where k-mers are often used in the context of sequence assembly. Searching for

patterns longer than k is expensive, but our auxiliary structures enable additional operations such

as extract to be performed efficiently using the k-BWT. Combined with our results of Chapter 4,

we believe that k-BWT-based indexes can be constructed efficiently for large text collections, while

providing functionality similar to that of a traditional BWT-based FM-Index.

Extending our work on context-bound text transformations such as the k-BWT, we investigated

variable depth context-bound text transformations in Chapter 6. We defined a variable depth text

transformation (v-BWT) as a derivative of the k-BWT, which sorts suffixes based on the number of

suffixes in each context group instead of sorting all suffixes to depth k. We defined a threshold v,

which describes the maximum size of each context group in the v-BWT. Thus each context group

is sorted until each context group is smaller or equal to v. We showed that the transform can be:

(1) constructed efficiently; (2) reversed storing no extra information; and (3) searched similar to the

our results in Chapter 5 for the k-BWT. We defined the conditions under which pattern search in the

v-BWT leads to a continuous range of suffixes in the v-BWT. Using these techniques we applied the

v-BWT to the approximate pattern matching problem similar to an approach independently proposed

by Navarro and Salmela [2009]. In our experimental evaluation we found that using the v-BWT is

more efficient and scalable than the approach of Navarro and Salmela [2009] as no suffix tree needs

to be constructed. We further showed that variable length substrings provide additional trade-offs

when performing pattern partitioning for q-gram-based approximate pattern matching algorithms.
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The second major aspect we focus on in this project is designing scalable succinct text indexes.

We investigated improving the performance of succinct text indexes by applying common optimiza-

tion techniques to the underlying building blocks of succinct text indexes. In Chapter 3 we provided

a systematic evaluation of different low-level data structures and algorithms used to build succinct

text indexes such as the FM-Index. First we showed improvements to basic bit-operations rank64

and select64 on computer words used to provide rank and select support over bitvectors. Next we

proposed a cache-efficient uncompressed bitvector representation which provides rank support close

to the time required to access a single bit in the vector as the size of the bitvector increases. Simi-

larly, we devised a fast, space-efficient select structure which performs well in practice and can be

constructed much faster than equivalent state-of-the-art select data structures. In our experiments we

showed that utilizing advanced CPU instruction sets such as SSE-4.2 and bit-parallelism can substan-

tially improve both run-time performance and construction cost of succinct data structures. Similar

to engineering uncompressed bitvectors, we successfully improved the performance of compressed

bitvectors by optimizing techniques proposed by Navarro and Providel [2012]. Bitvectors supporting

rank and select are used inside a wavelet tree to provide rank and select functionality over gen-

eral sequences. Thus, moving up the hierarchy of succinct data structures, we found cache-efficient

processing of wavelet trees and bit-parallel construction can increase the run-time performance of op-

erations and construction cost of wavelet trees. Additionally, we found that the previously unexplored

operating system features hugepages can have a considerable effect on the performance of succinct

data structures. To evaluate our improvements to low-level succinct data structures we conducted

an extensive empirical comparison of different succinct text indexes. To ensure our baselines were

competitive, we recreated the reference empirical evaluation of succinct text indexes of Ferragina

et al. [2008]. Without our optimizations, our text indexes perform similar to those publicly made

available with the study of Ferragina et al. [2008]. When evaluating our improvements, we showed

that especially for data sets much larger than those commonly used in the evaluation of succinct text

indexes, our optimizations substantially improve the performance of our text indexes. We further

found that on small data sets, improvements in run-time performance were smaller compared to large

data sets. The compression effectiveness of our most space efficient succinct text index outperforms

GZIP and is within 5% of XZ, the best of-the-shelf compression utility available, while still providing

query functionality in the microsecond range over a 64 GB data set. Overall, using the engineering

techniques discussed in Chapter 3, we provide the fastest or smallest — depending on the techniques

used — FM-Indexes available today.

To substantiate our claim that we improved the scalability of succinct text indexes, we compared

the performance of succinct text indexes, using improvements discussed in Chapter 3, to inverted in-
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dexes in a standard Information Retrieval evaluation environment. We evaluated the performance of

succinct text indexes in the context of top-φ ranked document retrieval — a classic problem solved ef-

ficiently by inverted indexes. We indexed standard IR text collections and measured the performance

of both index types over top-φ bag-of-words queries. Most importantly, we found that our indexes

can provide comparable run-time performance, at statistically equivalent effectiveness, to inverted

indexes which use query processing techniques optimized to support top-φ bag-of-words efficiently.

This is an important step towards a wider adoption of succinct text indexes as they can provide addi-

tional functionality which can be computationally expensive when using inverted indexes.

In this research project we proposed several techniques which can improve the scalability of suc-

cinct text indexes. We investigated alternative index types based on context-bound text transforma-

tions and engineering techniques applicable to succinct data structures in general. Our innovations, in

the context of making succinct text indexes more scalable, provide interesting new avenues towards

using succinct text indexes on a larger scale in areas such as Bioinformatics or Information Retrieval

both in academia and in industry.
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